董福宇1, 刘 峰1, 申向阳1, 刘 超1, 田 雨2, 苏 欣1, 任广涛1, 周桂申1, 张 悦1, 程 军3
1. 沈阳工业大学 材料科学与工程学院, 辽宁 沈阳 110000;
2. 辽河石油职业技术学院 智能制造系, 辽宁 盘锦 124000;3. 西北有色金属研究院 陕西省生物医用金属材料重点实验室, 陕西 西安 710016
引用格式:
董福宇, 刘峰, 申向阳, 等. 高熵合金粉体制备及应用的发展现状[J]. 中国粉体技术, 2025, 31(6): 1-15.
DONG Fuyu, LIU Feng, SHEN Xiangyang, et al. Development status of high-entropy alloy powder preparation techniques and applications[J]. China Powder Science and Technology, 2025, 31(6): 1−15.
DOI:10.13732/j.issn.1008-5548.2025.06.007
收稿日期: 2025-01-10, 修回日期: 2025-03-06, 上线日期: 2025-05-29。
基金项目:国家自然科学基金项目,编号:52271249; 辽宁省自然科学基金联合项目,编号:2023JH2/101700276; 西北工业大学凝固技术国家重点实验室开放课题:编号:SKLSP202415;西安英才计划项目,编号:XAYC240016。
第一作者简介:董福宇(1984—),男,教授,博士,博士生导师,辽宁省“百千万人才工程”万层次人才,研究方向为新型非晶合金及形成
规律、高熵合金形变强化等。E-mail:dongfuyu@sut. edu. cn。
通信作者简介:程军(1985—),男,高级工程师,博士,硕士生导师,研究方向为稀有金属材料制备与加工。E-mail:chengjun_851118@126. com。
摘要: 【目的】基于当前高熵合金的研究进展,综述高熵合金粉体的制备方法、固化方式及应用现状,展望高熵合金粉体未来的发展趋势。【研究现状】 近年来高熵合金粉体的制备方法主要包括机械合金化法、 气-水雾化法、 等离子旋转电极雾化法、 碳热冲击法、 热解法和电冲击法、 扫描探针光刻技术、 等离子电弧法、 直流电弧蒸发法、 化学还原法等,对上述方法的优势、 局限性进行评价; 高熵合金粉体的固化工艺包括材料烧结、 涂层、 增材制造等; 高熵合金粉体的功能性应用包括储氢材料、 医学和生物工程材料、 高效催化剂、 电磁屏蔽材料等。【展望】 提出机械合金化法和雾化法是目前制备高熵合金粉体的主要方法,但仍须要提升制备效率和粉体质量; 有待进一步研究高熵合金粉体的结构稳定性、 力学性能,以及储能、 磁性和催化等功能等; 通过增材制造技术制备具有特殊位错结构和微观组织的高熵合金,可能成为未来高性能材料的重要研究方向。认为基于材料基因工程理念,可借助粉末冶金高通量技术快速筛选高熵合金成分,从而缩短合金研发周期。利用粉末冶金工艺的灵活性和成分过饱和性等优势,可设计和制备复合结构、 层状结构、 梯度结构等异质高熵合金材料,有望应用于航空航天、生物医用等领域。
关键词:高熵合金; 雾化; 旋转电极; 固化工艺; 碳热; 电冲击
Abstract
Significance High-entropy alloys (HEAs) are mainly prepared using traditional melting and casting methods, which often result in issues such as severe component segregation, coarse microstructures, and internal shrinkage defects. These limitations and constraints on size and shape hinder their broader engineering applications. However, with the rapid development of science and technology, advanced near-net-shape forming technologies, such as 3D printing and powder metallurgy, have been gradually applied to HEA powder preparation. In recent years, HEA powders have gained significant attention as raw materials for the preparation of bulk components, coatings, films, and other functional materials. Despite this growing interest, comprehensive studies on HEA powders, especially nano-sized powders, remain rare. To enhance our understanding of HEA powders, this paper comprehensively examines their preparation processes, curing methods, and functional applications, providing a reference for future development and theoretical research on HEA powder preparation.
Progress This review systematically summarizes recent advancements in HEA powder preparation techniques, including mechanical alloying( MA), gas atomization, plasma rotating electrode atomization, carbothermal shock( CTS), pyrolysis, electric shock, scanning probe lithography, plasma arc, DC arc evaporation, and chemical reduction. Each method is evaluated for its advantages and limitations. The solidification processes of HEA powders, such as sintering, coating, and additive manufacturing, are discussed. The functional applications of HEA powders are also investigated, including hydrogen storage, medical and bioengineering, catalysts, and electromagnetic shielding. For instance, their excellent mechanical properties and biocompatibility make them ideal for orthopedic implants and dental treatment materials. In environmental and energy applications,HEA powders can be efficient catalysts. They can also be used as electromagnetic shielding materials such as electromagnetic shielding wall panels and electromagnetic isolation rooms.
Conclusions and Prospects Although significant achievements have been made in the design and preparation of HEA powders,considerable challenges remain. MA and atomization are currently the main methods for preparing HEA powders, but further improvements in efficiency and powder quality are needed. Future research should focus on addressing fundamental issues in powder preparation and developing innovative preparation methods. Their structural stability, mechanical properties, and functional performance in energy storage, magnetism, and catalysis need to be further studied. Additive manufacturing, with its ability to create unique dislocation structures and microstructures, holds great potential in developing high-performance HEA materials. Through material genetic engineering, high-throughput powder metallurgy techniques can accelerate the screening of HEA components, shortening the development cycle of alloys. In addition, the flexibility of powder metallurgy enables the design of heterogeneous HEA materials such as composite, layered, and gradient structures, which have potential applications in aerospace, biomedical engineering, and other fields, promoting further development of HEA technologies.
Keywords:high-entropy alloy; atomization; rotating electrode; solidification process; carbothermal; electric shock
参考文献(References)
[1]CANTOR B , CHANG I T H , KNIGHT P . Microstructural development in equiatomic multicomponent alloys[J]. Materials Science & Engineering: A. Structural Materials: Properties, Misrostructure and Processing, 2004, 375/376/377:213-218.
[2]REN M X, LI B S, FU H Z. Formation condition of solid solution type high-entropy alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 991-995.
[3]JIANG L, LU Y P, JIANG H, et al. Formation rules of single phase solid solution in high entropy alloys[J]. Materials Science and Technology, 2016, 32(6): 588-592.
[4]HSU W L, TSAI C W, YEH A C, et al. Clarifying the four core effects of high-entropy materials[J]. Nature Reviews Chemistry, 2024:1-15.
[5] LI D Y, LI C X, FENG T, et al. High-entropy Al0. 3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J]. Acta Materialia, 2017, 123: 285-294.
[6]LV S S, ZU Y Q, CHEN G J, et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness[J]. Materials Science and Engineering: A, 2020, 795: 140035.
[7]REN Z Y, HU Y L, TONG Y, et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titaniμm alloy[J]. Tribology International, 2023, 182: 108366.
[8]LIANG Y W, WANG J, YANG Z J, et al. A new Cr-based high entropy coating with high wear and corrosion resistance[J].Ceramics International, 2025.
[9]SENKOY O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.
[10]REN J, ZHANG Y, ZHAO D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J].Nature, 2022, 608(7921): 62-68.
[11]王庆学, 张联盟. 机械合金化:新型固态非平衡加工技术[J]. 中国陶瓷, 2002(2): 36-39
WANG Q X, ZHANG L M. Mechanical alloying-novel solid: state unbalanced machining technology[ J]. Chinese Ceramics, 2002(2): 36-39
[12]JOO S H, KAO H, JAMG M, et al. Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering[ J]. Journal of Alloys and Compounds ,2017, 698: 591-604.
[13]RAPHEL A, KUMARAN S, KUMAR K V, et al. Oxidation and corrosion resistance of AlCoCrFeTiHigh entropy alloy[J]. Materials Today: Proceedings, 2017, 4(2): 195-202.
[14]漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019, 48(8): 2623-2629.
QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on preparation of NbMoTaW high entropy alloy powder by mechanical alloying[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629.
[15]武世凯. AlCrFeMn系高熵合金的制备与降解偶氮染料的行为研究[D]. 南京: 东南大学, 2020.
WU S K. Preparation of AlCrFeMn based high entropy alloys and their degradation behavior of azo dyes [D]. Nanjing:Southeast University, 2020.
[16]ZHAO R F, REN B, ZHANG G P, et al. CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 491: 165574.
[17]MOSTAFAEI A, TOMAN J, STEVENS E L, et al. Microstructural evolution and mechanical properties of differently heat treated binder jet printed samples from gas- and water-atomized alloy 625 powders[J]. Acta Materialia, 2017, 124:280-289.
[18]LIANG J T, CHENG K C, CHEN S H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders[J]. Journal of Alloys and Compounds, 2019, 803: 484-490.
[19]LEHTONEN J, GE Y, CIFTCI N, et al. Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder[J]. Journal of Alloys and Compounds, 2020, 827: 154142.
[20]崔小杰, 苏新磊, 刘岩, 等. 气雾化工艺对高熵合金粉体粒径的影响[J]. 特种铸造及有色合金, 2022, 42(4): 441-445
CUI X J, SU X L, LIU Y, et al. The influence of gas atomization process on the particle size of high-entropy alloy powders[J]. Special Casting & Nonferrous Alloys, 2022, 42(4): 441-445
[21]YIM D, JANG M J, BAE J W, et al. Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders[J]. Materials Chemistry and Physics, 2018, 210: 95-102.
[22]ZHOU S C, ZHANG P, XUE Y F, et al. Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(5): 939-945.
[23]彭琳, 谭琦, 刘磊, 等. 球形粉体制备技术研究进展[J]. 中国粉体技术, 2024, 30(3): 12-27.
PENG L, TAN Q, LIU L, et al Research progress on preparation technology of spherical powders[ J]. China Powder Science and Technology, 2024, 30(3): 12-27.
[24]KAUFMANN A R. Method and apparatus for making powder: U. S. Patent 3,099,041[P]. 1963-07-30.
[25]张朔, 高阳, 马佳俊, 等. 雾化法制备金属粉末及其研究进展[J]. 郑州航空工业管理学院学报, 2023, 41(5): 75-86.
ZHANG S, GAO Y, MA J J, et al. Preparation of metal powders by atomization method and its research progress [J].Journal of Zhengzhou University of Aeronautics, 2023, 41(5): 75-86.
[26]GAO S H,FU A,XIE Z H, et al. Preparation and microstructure of high-activity spherical TaNbTiZr refractory highentropy alloy powders[J]. Materials, 2023, 16(2): 791.
[27]丁红瑜,唐佩尧,王凡,等.一种难熔高熵合金骨架-铜自发汗复合结构的制备方法: 112024902A[P].2020-12-04.
DING H Y, TANG P Y, WANG F, et al. Preparation method of refractory high-entropy alloy skeleton-copper spontaneous sweat composite structure :CN112024902A[P].2020-12-04.
[28]黄陆军, 王存玉, 安琦, 等.一种轻质富钛Ti-Zr-Nb-Al系难熔高熵合金基复合材料的制备方法: CN113930696A[P].
2022-01-14.
HUANG L J,WANG C Y, AN Q, et al. Preparation method of lightweight titanium-rich Ti-Zr-Nb-Al refractory highentropy alloy matrix composites: CN113930696A[P].2022-01-14.
[29]LI K, CHEN W. Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects[J]. Materials Today Energy, 2021, 20: 100638.
[30]Yu Y H, Qin Z P, Zhang X F,et al. Far-from-equilibrium processing opens kinetic paths for engineering novel materials by breaking thermodynamic limits[J]. ACS Materials Letters, 2024, 7(1): 319-332.
[31]YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.
[32]YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science,2018, 359(6383): 1489-1494.
[33]魏智强, 夏天东, 冯旺军, 等. 化学还原法制备纳米银粉及性能表征[J]. 中国粉体技术, 2006, 12(3): 4-6.
WEI Z Q, XIA X D, FENG W J, et al. Preparation and characterization of nano silver powder by chemical reduction method[ J]. China Powder Science and Technology, 2006, 12(3): 4-6
[34]FERRANDO R, JELLINEK J, JOHNSTON R L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles[J]. Chemical Reviews, 2008, 108(3): 845-910.
[35]SU Y J, ZHANG J, ZHANG L L, et al. Controlled synthesis of different metal oxide nanostructures by direct current arc discharge[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1078-1081.
[36]柴永新, 吴晓东, 戴起勋. 纳米金属钨粉制备方法的研究进展[J]. 江西冶金, 2005(5): 39-43.
CHAI Y X, WU X D, DAI Q X. Studies progress on presson preparation of tungsten nano-powder[J]. Jiangxi Metallurgy,2005(5): 39-43.
[37]MAO A Q, DING P P, QUAN F, et al. Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles[J]. Journal of Alloys and Compounds, 2018, 735: 1167-1175.
[38]CHEN P C, LIU X, HEDRICK J L, et al. Polyelemental nanoparticle libraries[J]. Science, 2016, 352(6293): 1565-1569.
[39]蒲志新, 武志龙, 贾加亮, 等. 基于Fluent的3D打印机成型腔内气固两相流动特性[J]. 中国粉体技术, 2021, 27(2):22-29.
PU Z X, WU Z L, JIA J J, et al. Gas solid two-phase flow characteristics in 3D printer forming cavity based on fluent[J]. China Powder Science and Technology, 2021, 27(2): 22-29
[40]MURR L E, MARTINEZ E, AMATO K N, et al. Fabrication of metal and alloy components by additive manufacturing:examples of 3D materials science[J]. Journal of Materials Research and Technology, 2012, 1(1): 42-54.
[41]GARDAN J. Additive manufacturing technologies: state of the art and trends[J]. Additive Manufacturing Handbook,2017: 149-168.
[42]ZHU P, YU Y, ZHANG C, et al. V0. 5Nb0. 5ZrTi refractory high-entropy alloy fabricated by laser addictive manufacturing using elemental powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106220.
[43] GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105834.
[44]XIAO B, LIU H Y, JIA W P, et al. Cracking suppression in selective electron beam melted WMoTaNbC refractory highentropy alloy[J]. Journal of Alloys and Compounds, 2023, 948: 169787.
[45]齐艳飞, 任喜强, 周景一, 等. 高熵合金涂层制备工艺的研究现状[J].稀有金属材料与工程, 2022, 51(2): 735-
742.
QI Y F, REN X Q, ZHOU J, et al. Research status of preparation technology of high entropy alloy coating[J].Rare Metal Materials and Engineering, 2022, 1(2): 735-742.
[46]ANUPAM A, KUMAR S, CHAVAN N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation[J]. Journal of Materials Research, 2019, 34(5): 796-806.
[47]ABHIJITH N, KUMAR D, KALYANSUNDARAM D. Development of single-stage TiNbMoMnFe high-entropy alloy coating on 304L stainless steel using HVOF thermal spray[J]. Journal of Thermal Spray Technology, 2022: 1-13.
[48]ZHANG M, ZHOU X, YU X, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311: 321-329.
[50]WU Y, LIAW P K, ZHANG Y. Preparation of bulk TiZrNbMoV and NbTiAlTaV high-entropy alloys by powder sintering[J]. Metals, 2021, 11(11): 1748.
[51]GUO W, LIU B, LIU Y, et al. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy[J]. Journal of Alloys and Compounds, 2019, 776: 428-436.
[52]SAHLBERG M, KARLSSON D, ZLOTEA C, et al. Superior hydrogen storage in high entropy alloys[J]. Scientific Reports, 2016, 6(1): 36770.
[53]CARDOSO K R, ROCHE V, JORGE JR A M, et al. Hydrogen storage in MgAlTiFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 858: 158357.
[54]KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9046-9059.
[55]ISHIMOTO T, OZASA R, NAKANO K, et al. Development of TiNbTaZrMo bio-high entropy alloy( BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility[J]. Scripta Materialia,2021, 194: 113658.
[56]HUANG J, WANG P, LI P, et al. Regulating electrolytic Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution[J]. Journal of Materials Science & Technology, 2021, 93: 110-118.
[57]NELLAIAPPAN S, KTIYAR N K, KUMAR R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization[J]. ACS Catalysis, 2020, 10(6): 3658-3663.
[58]ZHOU S Z, LI W C, HE B, et al. An active and regenerable nanometric high⁃entropy catalyst for efficient propane dehydrogenation[J]. Angewandte Chemie International Edition, 2024: e202410835.
[59]ZHANG Y, ZHANG B, LI K, et al. Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites[J]. Journal of Alloys and Compounds, 2018, 734: 220-228.
[60]WANG W, SUN G ,SUN X, et al. Electromagnetic wave absorbing properties of high-entropy transition metal carbides powders[J]. Materials Research Bulletin, 2023, 163: 112212.