ISSN 1008-5548

CN 37-1316/TU

最新出版

装粉工艺方式的研究进展

Research progress on die filling methods


钟文镇1a, 李润梓1a, 吴晓晨1b, 石欣琳2, 段广彬1b

1.济南大学 a.机械工程学院, b.材料科学与工程学院, 山东 济南 250022; 2. 中国科学院过程工程研究所, 北京 100190


引用格式:

钟文镇, 李润梓, 吴晓晨, 等. 装粉工艺方式的研究进展[J]. 中国粉体技术, 2025, 31(6): 1-15.

ZHONG Wenzhen, LI Runzi, WU Xiaochen, et al. Research progress on die filling methods[J]. China Powder Science and Technology, 2025, 31(6): 1-15.

DOI:10.13732/j.issn.1008-5548.2025.06.008

收稿日期: 2024-09-06, 修回日期: 2024-11-01, 上线日期: 2025-05-27。

基金项目: 国家自然科学基金项目, 编号: 51605192。

第一作者简介: 钟文镇(1981—),男,副教授,博士,硕士生导师,研究方向为粉体工程与装备。E-mail:me_zhongwz@ujn.edu.cn。

通信作者简介: 段广彬(1983—),男,教授,博士,硕士生导师,研究方向为新能源材料及工程、气固两相流。E-mail:mse_duangb@ujn.edu.cn。


摘要: 【目的】 为了改善装粉工艺的质量控制,满足粉末冶金、 非金属制备及食品医药等领域的高质量粉末制品近净成形的要求,综述主要装粉工艺方式与关键性能的最新研究进展。 【研究现状】 在工业应用领域,装粉工艺包括直线式、 抽吸式、 旋转式和强迫喂料式,目前研究集中于根据粉末特性改进结构与优化工艺参数,以有效调控装粉质量。抽吸式装粉利用吸力形成压力梯度,促进粉末流致密化并减小偏析。强迫喂料式装粉优化送料架结构,显著提升粉末流动性,减轻粉末特性对工艺的限制。减小颗粒间及颗粒-壁面摩擦和内聚力可增强粉末流动性,合理选择粒径配比并满足渗透率要求,改善装粉均匀性; 装粉致密度与均匀性正相关,通过调控均匀性并合理利用空气、振动、黏结剂及结构参数,可促进致密度的提升。 【结论与展望】 装粉工艺方式的未来研究方向有: 对关键因素进行全面而深入的系统性探究,提升装粉工艺方式的跨领域应用潜力; 利用强迫喂料式装粉的优势以增强装粉均匀性; 优化抽吸式装粉的吸气机制以提高装粉致密度; 基于装粉均匀性与致密度的综合分析,为增材制造铺粉工艺的优化提供科学参考与改进策略。

关键词: 装粉工艺; 粉末成型; 均匀性; 致密度; 研究进展


Abstract

Significance In recent years, powder forming, a pivotal technique in near-net-shape manufacturing, has developed rapidly, impacting fields such as powder metallurgy, pharmaceuticals, and ceramic materials. This technique simplifies complex component processing, reduces material and energy consumption, and facilitates recycling of metallic wastes. In powder forming, the uniform distribution and loose density of powder during die filling are crucial to achieving a homogeneous microstructure in the final product. Any flaws such as the uneven distribution or inconsistencies in the powder cannot be corrected in later compression steps. Thus, optimizing die filling processes and exploring their mechanisms have become a research focus to enhance product quality, reduce costs, advance material systems, accelerate green manufacturing, and broaden technological applications.Progress Given the diverse properties of powder materials and production requirements, die filling methods have become highly versatile. Selecting the appropriate die filling method (categorized as linear, suction, rotary, and forced feeding) is crucial for cost control, quality enhancement, and efficiency improvement. Each method offers unique strengths. Linear die filling is simple, cost-effective, and space-efficient. Suction die filling ensures superior uniformity and efficiency, especially for complex molds and powders of low-fluidity, minimizing the impact of material properties. Rotary die filling is well-suited for batch and continuous layered structures. Forced feeding die filling, with precise control, enhances powder fluidity and mixing. Material properties significantly influence uniformity and loose density in linear and rotary methods, while suction and forced feeding alleviate these constraints by improving powder fluidity. Additionally, environmental factors, including air, humidity, and static electricity, also exert complex effects on the filling process. However, the mechanisms underlying are yet to be fully explored, highlighting the need for rigorous environmental monitoring during operations.

Conclusions and Prospects Linear die filling, as a traditional and widely used method, is well-suited for single-filling molding requirements of powder materials such as ceramics and cemented carbides, although its uniformity is constrained by multiple factors, limiting its application in high-precision scenarios. Suction die filling, with optimized aspiration components, effectively reduces the interference of air resistance, thereby significantly enhancing filling efficiency, loose density, and uniformity. Although it allows for varying process parameters, further coordination and control among these parameters are still required to address the challenges posed by diverse powder material properties. Rotary die filling is effective in continuous operations, particularly for small molds in medium-to-low-speed tablet presses, but its dependence on powder fluidity hinders its broader applicability. Forced feeding die filling, with optimized structure and paddle rotation, demonstrates immense potential in achieving high efficiency and uniformity, but at a higher cost. The following aspects need to be further studied: 1) Leveraging forced feeding to enhance the uniformity of die filling, combining with suction mechanisms to improve filling density, and developing low-cost, high-precision, and widely applicable die filling processes. 2) Introducing innovative applications of rotary and suction die filling methods into powder metallurgy, and developing a new suction-rotary die filling method to achieve uniform powder distribution, high densification, and high efficiency. These approaches are instrumental in improving the process and equipment standards of China's powder metallurgy industry. 3) Conducting a comprehensive and in-depth systematic investigation of key factors affecting die filling, especially the influences of environmental factors, such as air, humidity, and static electricity, as these factors vary with powder material characteristics. 4) Based on the comprehensive analysis of die filling uniformity and density, combined with the commonalities between die filling and powder laying processes, providing a more scientific reference and improvement strategies for the optimization of powder laying process in additive manufacturing.

Keywords: die filling; powder metallurgy; uniformity; density; research progress


参考文献(References)

[1]唐彬彬, 冯思雨, 段君元, 等. 颗粒增强铝基复合材料的制备与界面行为[J]. 中国粉体技术, 2024, 30(4): 1-14.

TANG B B, FENG S Y, DUAN J Y, et al. Preparation and interfacial behavior of particle-reinforced aluminum matrix composites[J]. China Powder Science and Technology, 2024, 30(4): 1-14.

[2]GAUTAM S K, ROY H, LOHAR A K, et al. Studies on mold filling behavior of Al10.5Si1.7Cu Al alloy during rheo pressure die casting system [J]. International Journal of Metalcasting, 2023, 17(4): 2868-2877.

[3]XU R, NAN W G. Analysis of the metrics and mechanism of powder spreadability in powder-based additive manufacturing[J]. Additive Manufacturing, 2023, 71: 103596.

[4]李其龙, 徐伟. 铁基粉末成形混合料的成分偏析问题分析[J]. 粉末冶金技术, 2013, 31(4): 259-262.

LI Q L, XU W. Problem analysis for the composition segregation of iron-based powder mixture[J]. Powder Metallurgy Technology, 2013, 31(4): 259-262.

[5]许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 41-53.

XU Y T, LI Y Z, WANG J Y. Research progress of selective laser melting of aluminum alloy and composites [J]. Materials Reports, 2024, 38(15): 41-53.

[6]COUBE O, COCKS A C F, WU C Y. Experimental and numerical study of die filling, powder transfer and die compaction[J].Powder Metallurgy, 2005, 48(1): 68-76.

[7]ZAKHVATAYEVA A, HARE C, WU C Y. Size-induced segregation during die filling[J]. International Journal of Pharmaceutics: X, 2019, 1: 100032.

[8]CLAUDIA H, SRIKANTH R G, REGINA S. Simulation of particle size segregation in a pharmaceutical tablet press lab-scale gravity feeder[J]. Advanced Powder Technology, 2018, 29 (3): 765-780.

[9]WU Z F, WU Y F. Influence of moisture content on die filling of pharmaceutical powders[J]. Journal of Drug Delivery Science and Technology, 2022, 78: 103985.

[10]KHALA M, HARE C, WU C, et al. Density and size-induced mixing and segregation in the FT4 powder rheometer:an experimental and numerical investigation[J]. Powder Technology, 2021, 390: 126-142

[11]ZHANG J T, TAN Y Q, XIAO X W, et al. Comparison of roller-spreading and blade-spreading processes in powder-bed additive manufacturing by DEM simulations[J]. Particuology, 2022, 66: 48-58.

[12]CHUNG Y, LIAO C C, ZHUANG Z H. Experimental investigations for the effect of fine powders on size-induced segregation in binary granular mixtures[J]. Powder Technology, 2021, 387: 270-276.

[13]ZAKHVATAYEVA A, ZHONG W Z, MAKROO H A, et al. An experimental study of die filling of pharmaceutical powders using a rotary die filling system[J]. International Journal of Pharmaceutics, 2018, 553: 84-96.

[14]WU C Y, DIHORU L, COCKS A C F. The flow of powder into simple and stepped dies[J]. Powder Technology, 2003, 134:24-39.

[15]ZHENG C, YOST E, MULIADI A R, et al. Numerical analysis of die filling with a forced feeder using GPU-enhanced discrete element methods[J]. International Journal of Pharmaceutics, 2022, 622: 121861.

[16]BIERWISCH C, KRAFT T, RIEDE H, et al. Die filling optimization using three-dimensional discrete element modeling[J]. Powder Technology, 2009, 196(2): 169-179.

[17]YU Y, SAXÉN H. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.

[18]ZAKHVATAYEVA A, HARE C, WU C Y. Suction filling of pharmaceutical powders[J]. Powder Technology, 2019, 355:438-448.

[19]吴晶晶, 蔡杰, 高亚东, 等. 基于 CFD-DEM 模腔填充过程中颗粒分离行为分析[J]. 中国粉体技术, 2022, 28(4): 90-99.

WU J J, CAI J, GAO Y D, et al. Analysis of particle separation behavior during cavity filling process based on CFD-DEM[J]. China Powder Science and Technology, 2022, 28(4): 90-99.

[20]钟文镇, 昃向博, 李国平, 等. 球形玻璃珠填充模腔的流动特性试验[J]. 中国粉体技术, 2019, 25(6): 32-37.

ZHONG W Z, ZE X B, LI G P, et al. Experimental study on flow characteristics of die filling of spherical glass beans[J].China Powder Science and Technology, 2019, 25(6): 32-37.

[21]MAKSE H A, HAVLIN S, KING P R, et al. Spontaneous stratification in granular mixtures[J]. Nature, 1997,386: 379-382.

[22]GUO Y, WU C Y, KAFUI K D, et al. Numerical analysis of density-induced segregation during die filling[J]. Powder Technology, 2009, 197: 111-119.

[23]ZHANG J T, LIU P. Powder flowability characterisation at preheating temperature in additive manufacturing[J]. Powder Metallurgy, 2023, 66(5): 427-435.

[24]MINASYAN T, HUSSAINOVA I. Laser power-bed fusion of ceramic particulate reinforced aluminum alloys[J]. A Review Materials, 2022, 15(7): 2467.

[25]ASACHI M, HASSANPOUR A, GHADIRI M, et al. Experimental evaluation of the effect of particle properties on the segregation of ternary powder mixtures[J]. Powder Technology, 2018, 336: 240-254.

[26] JACKSON S, SINKA I C, COCKS A C F. The effect of suction during die fill on a rotary tablet press[J]. Eur J Pharm Biopharm, 2007, 65: 253-256.

[27]WU C Y, GUO Y. Numerical modelling of suction filling using DEM/CFD[J]. Chemical Engineering Science, 2012, 73: 231-238.

[28]MILLS L A, SINKA I C. Effect of particle size and density on the die fill of powders[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84: 642-652.

[29]BASERINIA R, SINKA I C, RAJNIAK P. Vacuum assisted flow initiation in arching powders[J]. Powder Technology, 2016, 301:493-502.

[30]BASERINIA R, SINKA I C. Mass flow rate of fine and cohesive powders under differential air pressure[J]. Powder Technology, 2018, 334: 173-182.

[31]BASERINIA R, SINKA I C. Powder die filling under gravity and suction fill mechanisms[J]. International Journal of Pharmaceutics, 2019, 563: 135-155.

[32]WU C Y, COCKS A C F. Flow behaviour of powders during die filling[J]. Powder Metallurgy, 2004, 47(2): 127-136.

[33]GOPIREDDY S R, HILDEBRANDT C, URBANETZ N A. Numerical simulation of powder flow in a pharmaceutical tablet press lab-scale gravity feeder[J]. Powder Technology, 2016, 302: 309-327.

[34]ZHONG W Z, ZAKHVATAYEVA A, ZHANG L, et al. Powder flow during linear and rotary die filling[J]. International Journal of Pharmaceutics, 2021, 602: 120654.

[35]SCHOMBERG K A, KWADE A, FUNKE H J. The challenge of die filling in rotary presses:a systematic study of material properties and process parameters[J]. Pharmaceutics, 2020, 12(3): 248.

[36]TANG X, ZAKHVATAYEVA A, ZHANG L, et al. Flow behaviour of pharmaceutical powders during rotary die filling with a paddle feeder[J]. International Journal of Pharmaceutics, 2020, 585: 119547.

[37]GOH H P, HENG P W S, LIEW C V. The effects of feed frame parameters and turret speed on mini-tablet compression[J].Journal of Pharmaceutical Sciences, 2018, 108(3): 1161-1171.

[38]GOH H P, HENG P W S, LIEW C V. Investigation on the impact of powder arching in small die filling[J]. International Journal of Pharmaceutics, 2018, 551: 42-51.

[39]CHO C, KIM J, PARK E. Effects of process parameters of rotary tablet press on die filling behavior during mini-tablet production: Comparison with conventional tablet[J]. Powder Technology, 2020, 362: 90-100.

[40]DÜLLE M, ÖZCOBAN H, LEOPOLD C S. The effect of different feed frame components on the powder behaviour and the residence time distribution with regard to the continuous manufacturing of tablets[J]. International Journal of Pharmaceutics, 2019, 555: 220-227.

[41]GRYMONPRÉA W, VANHOORNEA V, SNICKA B V, et al. Optimizing feed frame design and tableting process parameters to increase die-filling uniformity on a high-speed rotary tablet press[J]. International Journal of Pharmaceutics, 2018,548: 54-61.

[42]DÜHLMEYER K P, ÖZCOBAN H, LEOPOLD C S. Comparison of two paddle wheel geometries within the filling chamber of a rotary tablet press feed frame with regard to the distribution behavior of a model powder and the influence on the resulting tablet mass[J]. Drug Development and Industrial Pharmacy, 2019, 45(8): 1233-1241.

[43]DÜHLMEYER K P, ÖZCOBAN H, LEOPOLD C S. Inline monitoring of the powder filling level within a rotary tablet press feed frame[J]. Powder Technology, 2019, 351: 134-143.

[44]PEETERS E, THOMAS D B, CHRIS V, et al. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press[J]. Drug development and industrial pharmacy, 2015, 41(4): 530-539.

[45]ASACHI M, HASSANPOUR A, GHADIRI M. Assessment of near-infrared (NIR) spectroscopy for segregation measurement of low content level ingredients[J]. Powder Technology, 2017, 320: 143-154.

[46]MATEO-ORTIZ D, MÉNDEZ R. Relationship between residence time distribution and forces applied by paddles on powder attrition during the die filling process[J]. Powder Technology, 2015, 278: 111-117.

[47]SCHOMBERG A K, KWADE A, FUNKE J H. Modeling die filling under gravity for different scales of rotary tablet presses[J]. Powder Technology, 2023, 424: 118550.

[48]SCHOMBERG A K, KWADE A, FUNKE J H. Modeling gravity filling of dies on a rotary tablet press[J]. Powder Technology, 2023, 413: 117998.

[49]SNICK B V, GRYMONPRÉ W, DHONDT J, et al. Impact of blend properties on die filling during tableting[J]. International Journal of Pharmaceutics, 2018, 549: 476-488.

[50]XU Z B, YOSHINAGA S, TSUNAZAWA Y, et al. Numerical investigation of segregation behavior of multi-sized particles during pharmaceutical mini-tablet die filling[J]. Journal of Drug Delivery Science and Technology, 2021,61: 102301.

[51]MEHRABI M, HASSANPOUR A, BAYLY A. An X-ray microtomography study of particle morphology and the packing

behaviour of metal powders during filling, compaction and ball indentation processes[J]. Powder Technology, 2021, 385:250-263.

[52]FRANCESCA O A, ALBERTO D R. Discrete element method evaluation of triboelectric charging due to powder handling in the capsule of a DPI[J]. Pharmaceutics, 2023, 15(6): 1762.

[53]LAWRENCE L R, BEDDOW J K. Powder segregation during die filling[J]. Powder Technology, 1968, 2: 253-259.

[54]KHAKHAR D V, MCCARTHY J J, OTTINO J M. Mixing and segregation of granular materials in chute flows[J]. Chaos, 1999, 9(3): 594-610.

[55]FAN M, SU D, LI Y, et al. Exploring the role of particle-form polydispersity in the fabric of granular packing: insights from DEM simulations with ellipsoidal particle assemblies[J]. Powder Technology, 2024, 435: 119402.

[56]CHEN D D, LIU B, XU W, et al. Effect of particle morphology on the flowability of HDH Ti powders treated by high temperature ball milling[J]. Advanced Powder Technology, 2022, 33(11): 103803.

[57]张璐栋. Ti、 Al元素粉末多粒度比压制成形的致密化机理研究[D]. 宁波: 宁波大学, 2021.

ZHANG L D. Study on densification mechanism of Ti and Al powders by multi-particle size ratio pressing[D]. Ningbo:Ningbo University, 2021.

[58]GUO Y, KAFUI K, WU C Y, et al. A coupled DEM/CFD analysis of the effect of air on powder flow during die filling[J]. AICHE Journal, 2009, 55(1): 49-62.

[59]GUO Y, WU C Y, KAFUI K D, et al. DEM/CFD analysis of size-induced segregation during die filling[J]. Powder Technology, 2011, 206: 177-188.

[60]WU C Y, COCKS A C F. Numerical and experimental investigations of the flow of powder into a confined space[J]. Mechanics of Materials, 2006, 38(4): 304-324.