ISSN 1008-5548

CN 37-1316/TU

最新出版

旋风分离器的研究现状

Research status of cyclone separators


韩传军1, 胡洋1, 梁斌2, 张杰1, 李琦2, 张锦涛2

1.西南石油大学 石油天然气装备教育部重点实验室, 四川 成都 610500; 2.中国石油西南油气田公司, 四川 成都 610051


引用格式:

韩传军, 胡洋, 梁斌, 等. 旋风分离器的研究现状[J]. 中国粉体技术, 2025, 31(6): 1-13.

HAN Chuanjun, HU Yang, LIANG Bin, et al. Research status of cyclone separators[J]. China Powder Science and Technology, 2025, 31(6): 1-13.

DOI:10.13732/j.issn.1008-5548.2025.06.004

收稿日期: 2024-07-05, 修回日期: 2024-09-10,上线日期: 2025-05-22。

基金项目: 国家自然科学基金项目,编号:52374011;四川省杰出青年基金项目,编号 :2019JDJQ0038。

第一作者简介: 韩传军(1979—),男,教授,博士,博士生导师,四川省学术和技术带头人,研究方向为石油天然气装备现代设计与制造。E-mail:hanchuanjun@swup.edu.cn。


摘要: 【目的】 旋风分离器具有结构简单、 成本低的特点,在化工、 能源等多个领域中作为气固分离设备被广泛应用。现有技术仍面临分离效率不高、 压降大等问题,尤其在复杂工况下的应用中表现不佳。随着节能减排需求增加,对其效率、 压降和稳定性的要求也日益提高,须进一步了解目前国内外气固分离用旋风分离器的研究进展,开展相关技术创新和应用优化。 【研究现状】 概述旋风分离器的分离机制与压降、 分离效率等评价指标,总结影响旋风分离器分离性能的操作参数和结构参数,介绍多种新型分离器结构。 【结论与展望】 对于极细颗粒和多种尺寸的颗粒群,旋风分离器的分离效率仍然面临挑战。同时,大的压降不仅增加运行成本,还限制旋风分离器在某些特殊场景中的应用; 提出未来借助3D打印、大数据与人工智能技术等可以探索更多复杂工况下的旋风分离器研究方法,进一步深化对其内部流场和介质分离过程的理解,推动其在实际工程中的应用。

关键词: 气固分离; 旋风分离器; 分离机制; 分离性能

Abstract

Significance Cyclone separators, known for their simple structure, ease of installation and operation, and cost-effectiveness, are considered one of the most economical gas-solid separation devices and are widely utilized in industries such as energy, chemical engineering, environmental protection, and pharmaceuticals. By utilizing the high-speed rotation of airflow to generate centrifugal force, cyclone separators achieve efficient gas-solid separation. However, despite meeting basic requirements, challenges including low separation efficiency, significant pressure drop, and issues such as cyclone tube blockage, scaling, and abrasion persist. Increasing demands for energy efficiency and emission reduction have raised expectations for cyclone separators, necessitating improvements in efficiency, pressure drop, and stability. Although extensive efforts have been made to explore separation mechanisms and enhance separation performance, further technical innovation and application optimization are needed to address these issues.

Progress Based on the inlet flow direction, cyclone separators are classified into tangential inlet and axial inlet with guide vanes. Researchers worldwide have conducted extensive experimental and numerical simulation studies to enhance their separation efficiency, including analyzing unconventional vortex flow fields, improving internal structures, and integrating external auxiliary devices. However, the complex movement of solid-phase particles inside the separators poses challenges for performance optimization. To overcome the drawbacks in traditional experimental methods such as long experimental cycles and high workload, numerical simulation techniques, including large eddy simulation (LES), Reynolds stress models, and enhanced RNG k-ε models, are increasingly used to analyze flow behavior and assess the separator performance under different operating conditions. Two main indicators, i.e., pressure drop and separation efficiency, are used to evaluate their performance. Pressure drop estimates the energy loss experienced by cyclone separators under specific operating conditions, while separation efficiency evaluates their ability to separate particles. Key sensitive factors influencing separation performance include operational and structural parameters. Operational parameters consist of inlet particle concentration, particle size, inlet velocity, and inlet pressure, which can alter the internal flow field of separators. Structural parameters include cone-to-cylinder ratio, diameter, and height. Despite the relatively simple structure, determining the optimal combination of these structural parameters remains a challenge. In scenarios requiring high processing volumes and superior separation performance, such as in chemical plants and pharmaceutical factories, multi-stage separation processes can enhance processing capacity and separation efficiency. However, cyclone separators are not optimal for separating fine particles, and further optimization is required to meet the increasing demands for separation performance.

Conclusions and Prospects Cyclone separator technology has garnered significant attention from scholars worldwide, with extensive research focusing on improving separation performance and structural design. However, advances in numerical simulation techniques and computational capabilities present opportunities for further model and algorithm optimization, which could enhance simulation accuracy and efficiency. Moreover, exploring more complex operating conditions through numerical simulations and conducting comparative analyses between simulation results and actual operational data can deepen our understanding of the internal flow behavior of cyclone separators, facilitating their practical applications in engineering. Challenges persist in improving their separation efficiency, particularly for extremely fine particles and highly diverse particle distributions. Fluctuations in particle loading, changes in gas composition, and variations in operating conditions can further compromise the stability and reliability of the device. High pressure drop, leading to increased operational costs and limited applications, remains a crucial challenge. Future research should focus on refining design and optimization strategies to meet the complex gas-solid separation requirements across different industrial applications. The integration of technologies such as 3D printing, big data, and artificial intelligence offer promising pathways to explore new research methods, further deepening our understanding of the internal flow fields and separation processes of cyclone separators under complex conditions, and promoting their broader application in practical engineering.

Keywords: gas-solid separation; cyclone separator; separation mechanism; separation performance


参考文献(References)

[1]GAO Z W, WEI Y D, LIU Z X, et al. Internal components optimization in cyclone separators: systematic classification and meta-analysis[J]. Separation and Purification Reviews, 2021, 50(4): 400-416.

[2]CHANDRAKANT R S, MANIKPRABHU D, ISHAN M, et al. Numerical simulation of hydro-cyclone separator used for separation of highly dense suspended particulate matter[J]. Materials Today: Proceedings, 2022, 59: 85-92.

[3]周闻, 王康松, 鄂承林, 等. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573, 2821.

ZHOU W, WANG K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573, 2821.

[4]杜佳庆. 旋风分离器内气固两相流的数值模拟分析及优化[D]. 青岛: 中国石油大学(华东), 2021.

DU J Q. Numerical model analysis and optimization of gas-solid two-phase flow in cyclone separator[D]. Qingdao: China University of Petroleum, 2021.

[5]李杰. 旋风分离器数值模拟与结构优化研究[D]. 成都: 西南石油大学, 2019.

LI J. Numerical simulation and structural optimization research on cyclone separator[D]. Chengdu: Southwest Petroleum University, 2019.

[6]CELIS G E O, LOUREIRO J B R, LAGE P L C, et al. The effects of swirl vanes and a vortex stabilizer on the dynamic flow field in a cyclonic separator[J]. Chemical Engineering Science, 2022, 248: 117099.

[7]LIM J H, OH S H, KANG S, et al. Development of cutoff size adjustable omnidirectional inlet cyclone separator[J]. Separation and Purification Technology, 2021, 276: 119397.

[8]AN I H, LEE C H, LIM J H, et al. Development of a miniature cyclone separator operating at low Reynolds numbers as a preseparator for portable black carbon monitors[J]. Advanced Powder Technology, 2021, 32(12): 4779-4787.

[9]管西旗. 导叶式多管旋风分离器的数值模拟研究[D]. 成都: 西南石油大学, 2014.

GUAN X Q. Numerical simulation study of guide vane multi-tube cyclone[D]. Chengdu: Southwest Petroleum University, 2014.

[10]王鹏皓, 戴俐, 胡晓红, 等. 磨煤机分离器中气固两相流行为数值模拟 [J]. 煤炭学报, 2024,49(8):3658-3666.

WANG P H, DAI L, HU X H, et al. Numerical simulation of gas-solid two-phase flow behaviors in a coal mill separator[J/OL]. Journal of China Coal Society,2024,49(8):3658-3666.

[11]XIANG R B, PARK S H, LEE K W. Effects of cone dimension on cyclone performance[J]. Journal of Aerosol Science, 2001, 32:549-561.

[12]FARZAD P, SEYYED H H, KHAIRY E, et al. Influence of the dipleg shape on the performance of gas cyclones[J]. Separation and Purification Technology, 2020, 233: 116000.

[13]YANG X L, YANG J T, WANG S B, et al. Effects of operational and geometrical parameters on velocity distribution and micron mineral powders classification in cyclone separators[J]. Powder Technology, 2022, 407:117609.

[14]潘腾云. 基于CFD技术的旋风分离器数值模拟研究[J]. 中外能源, 2023, 28(7): 73-78.

PAN T Y. Numerical simulation study on cyclone separator based on computational fluid dynamics[J]. Sino-Global Energy,2023, 28(7): 73-78.

[15]ZHOU H L, HU Z Q, ZHANG Q L, et al. Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator[J]. Powder Technology, 2019, 344: 784-796.

[16]李圣楠, 武斌, 陈葵, 等. 筒锥比对旋风分离器切割直径及流场的影响[J/OL]. 化学工业与工程.(2023-11-24)[2024-11-20].http://doi.org/10.13353/j.issn.1004.9533.20230132.

LI S N, WU B, CHEN K, et al. Cutting diameter for solid particles and flow field in cyclones with different cylinder-cone height ratio[J]. Chemical Industry and Engineering. (2023-11-24)[2024-11-20].http://doi.org/10.13353/j.issn.1004.9533.20230132.

[17]蔡香丽, 杨智勇, 王菁, 等. 旋风分离器气相旋转流流场动态特性的研究进展[J]. 化工进展, 2019, 38(11): 4805-4814.

CAI X L, YANG Z Y, WANG J, et al. Research progress on dynamic characteristics of swirling flow in a cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814.

[18]A.C.霍夫曼, L.E.斯坦因. 旋风分离器: 原理、设计和工程应用[M]. 北京: 化学工业出版社, 2004: 13-59, 128-130.

HOFFMANN A C, STEIN L E. Cyclones: principles, design, and engineering applications[M]. Beijing: Chemical Industry Press, 2004: 13-59, 128-130.

[19]李鹏飞, 徐敏义, 王飞飞. 精通CFD工程仿真与案例实战: FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京: 人民邮电出版社, 2017: 1-2.

LI P F, XV M Y, WANG F F. Proficient in CFD engineering simulation and case practice: FLUENT GAMBIT ICEM CFD

Tecplot[M]. Beijing: Posts & Telecom Press, 2017: 1-2.

[20]赵宏强, 蒋海华, 谢武装. 基于大涡模拟的旋风分离器内流场数值模拟研究[J]. 环境工程学报, 2009, 3(4): 759-763.

ZHAO H Q, JIANG H H, XIE W Z. Study of flow field of cyclone separator based on large eddy simulation[J]. Chinese Journal of Environmental Engineering, 2009, 3(4): 759-763.

[21]王江云, 毛羽, 刘美丽,等. 用改进的RNG k-ε模型模拟旋风分离器内的强旋流动[J]. 石油学报, 2010, 26(1): 8-13.

WANG J Y, MAO Y, LIU M L, et al. Numerical simulation of strongly swirling flow in cyclone separator by using an

advanced RNG k-ε model[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(1): 8-13.

[22]HAN C J, HU Y, LI W Y, et al. Gas-solid separation performance and structure optimization in 3D printed guide vane cyclone separator[J]. Advanced Powder Technology, 2022, 33(11): 103815.

[23]刘玉田. 旋转叶片式涡旋管分离器性能数值分析[D]. 大连: 大连交通大学, 2024.

LIU Y T. Numerical analysis of the performance of rotary vane scroll tube separator[D]. Dalian:Dalian Jiaotong University,2024.

[24]YAO Y G, SHANG M X, KE X W, et al. Effects of the inlet particle spatial distribution on the performance of a gas-solid cyclone separator[J]. Particuology, 2024, 85: 133-145.

[25]MING G, LIU Y, SON H, et al. An overview of novel geometrical modifications and optimizations of gas-particle cyclone separators[J]. Separation and Purification Technology, 2024, 329: 125136.

[26]TREFZ M , MUSCHELKNAUTZ E. Extended cyclone theory for gas flows with high solids concentrations[J]. Chemical Engineering & Technology, 1993, 16(3): 153-160.

[27]熊至宜, 吴小林, 杨云兰, 等. 高压下多管旋风分离器压降模型[J]. 化工学报, 2010, 61(9): 2424-2429.

XIONG Z Y, WU X L, YANG Y L, et al. Pressure drop model of multicyclone separator at high-pressure[J]. CIESC Journal,2010, 61(9): 2424-2429.

[28]CHEN J Y, SHI M X. A universal model to calculate cyclone pressure drop[J]. Powder Technology, 2007, 171(3): 184-191.

[29]YUU S C, JOTAKI T, TOMITA Y J, et al. The reduction of pressure drop due to dust loading in a conventional cyclone[J].Chemical Engineering Science, 1978, 33(12): 1573-1580.

[30]CORT S C, GIL A. Modeling the gas and particle flow inside cyclone separators[J]. Progress in Energy and Combustion Science, 2007, 33(5): 409-452.

[31]DZIUBAK T. Experimental investigation of possibilities to improve filtration efficiency of tangential inlet return cyclones by modification of their design[J]. Energies, 2022, 15(11): 3871.

[32]WEI Q, SUN G G, YANG J X. A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator[J]. Chemical Engineering Science, 2019, 204: 287-297.

[33]NOR M A M, KAMARUDDIN S, LEMMA T A . Numerical investigation of API 31 cyclone separator for mechanical seal piping plan for rotating machineries[J]. Alexandria Engineering Journal, 2022, 61(2): 1597-1606.

[34]YAO Y G, HUANG W S, WU Y X, et al. Effects of the inlet duct length on the flow field and performance of a cyclone separator with a contracted inlet duct[J]. Powder Technology, 2021, 393: 12-22.

[35]MORIN M, RAYNAL L, KARRI S B R, et al. Effect of solid loading and inlet aspect ratio on cyclone efficiency and pressure drop: experimental study and CFD simulations[J]. Powder Technology, 2021, 377: 174-185.

[36]FASSANI F L S, GOLDSTEIN L. A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J]. Powder Technology, 2000, 107: 60-65.

[37]LI Y, QIN G L, XIONG Z Y, et al. The effect of particle humidity on separation efficiency for an axial cyclone separator[J]. Advanced Powder Technology, 2019, 30(4): 724-731.

[38]樊骁琦. 旋风分离器内颗粒聚集现象的研究[D]. 北京: 中国石油大学(北京), 2023.

FAN X Q. Study of particle aggregation in cyclones[D]. Beijing: China University of Petroleum (Beijing), 2023.

[39]王肖. 撞击式气固分离器颗粒运动特性数值模拟和试验研究[D]. 杭州:浙江大学, 2018.

WANG X. Numerical simulation and experimental study of particle motion characteristics of impingement gas-solid separator[D]. Hangzhou: Zhejiang University, 2018.

[40]赵海超, 顾丛汇, 杜明铺, 等. 细颗粒物在旋风分离器内流动特性[J]. 化学工程, 2023, 51(1): 68-73.

ZHAO H C, GU C H, DU M P, et al. Flow characteristics of particles in cyclone separator[J]. Chemical Engineering(China),2023, 51(1): 68-73.

[41]韩平, 张东旺, 辛胜伟, 等. 运行参数对660 MW高效超超临界CFB锅炉四循环回路气固流动特性的影响研究[J].热力发电, 2022, 51(3): 96-101.

HAN P, ZHANG D W, XIN S W, et al. Study on influence of operating parameters on gas-solid flow characteristics of four-cycle loop of a 660 MW high-efficiency ultra-supercritical CFB boiler[J]. Thermal Power Generation, 2022, 51(3): 96-101.

[42]韩平, 张东旺, 谢国威, 等. 660 MW高效超超临界CFB锅炉四循环回路气固均匀性数值模拟[J]. 洁净煤技术, 2021, 27(6): 85-92.

HAN P, ZHANG D W, XIE G W, et al. Numerical study on the gas-solid uniformity of the four-cycle loop of 660 MW high-efficiency ultra-supercritical CFB boiler[J]. Clean Coal Technology, 2021, 27(6): 85-92.

[43]冯乐乐, 王景玉, 吴玉新, 等. 颗粒特性对撞击分离器性能影响的实验与数值研究[J]. 化工学报, 2018, 69(8): 3348-3355.

FENG L L, WANG J Y, WU Y X, et al. Experimental and numerical investigation on effect of particle characteristics on performance of plate-type impact separator[J]. CIESC Journal, 2018, 69(8): 3348-3355.

[44]张荣华. 旋风分离器高度和直径对性能及流场的影响[D]. 太原: 太原理工大学, 2023.

ZHANG R H. Effect of cyclone height and diameter on performance and flow field [D]. Taiyuan: Taiyuan University of Technology, 2023.

[45]黄鹏升. 基于响应曲面法的旋风分离器排气管优化研究[J]. 现代矿业, 2021, 37(8): 169-173.

HUANG P S. Optimization of exhaust pipe of cyclone separator based on response surface method[J]. Modern Mining, 2021,37(8): 169-173.

[46]陈卓. 除砂器不同缩放尺度下气体流速对分离效率的影响[D]. 西安: 西安石油大学, 2022.

CHEN Z. Effect of gas flow velocity on separation efficiency under different scale scales of desander[D]. Xi’an:Xi’an Shiyou University, 2022.

[47]杜慧娟, 王川保, 马红和, 等. 入口收缩角度对旋风分离器分离性能的影响[J]. 热力发电, 2019, 48(11): 43-48, 72.

DU H J, WANG C B, MA H H, et al. Influence of inlet necking angle on separation performance of cyclone separatol[J].Thermal Power Generation, 2019, 48(11): 43-48, 72.

[48]乐敏. 旋风分离器进气管结构改进的数值模拟研究[J]. 流体机械, 2019, 47(10): 14-19.

YUE M. Numerical simulation study on the improvement of intake pipe structure of cyclone separator[J]. Fluid Machinery,2019, 47(10): 14-19.

[49]张晓玲. 大型CFB锅炉旋风分离器性能模拟研究[D]. 重庆: 重庆大学, 2022.

ZHANG X L. Simulation study on the performance of cyclone separator of large CFB boiler[D]. Chongqing: Chongqing

University, 2022.

[50]马继伟, 张亚新. 六旋风分离器循环流化床内气固流动特性数值模拟[J]. 济南大学学报(自然科学版), 2022, 36(6):723-731.

MA J W, ZHANG Y X. Numerical simulation of gas-solid flow characteristics in circulating fluidized bed with six cyclone separators[J]. Journal of University of Jinan (Science and Technology), 2022, 36(6): 723-731.

[51]张爱琴, 王兴东. 差异旋风分离器并联的分离性能的实验研究[J]. 工业加热, 2021, 50(7): 13-15, 20.

ZHANG A Q, WANG X D. Experimental study on parallel separation performance of differential cyclone separators[J].Industrial Heating, 2021, 50(7): 13-15, 20.

[52]蔡晋. 并联双分离器气固流动特性研究[D]. 太原: 太原理工大学, 2019.

CAI J. Study on gas-solid flow characteristics of parallel double separator[D]. Taiyuan:Taiyuan University of Technology,2019.

[53]SARDAR R, OH J, KIM M, et al. The effect of inlet velocity, gas temperature and particle size on the performance of double cyclone separator[J]. Chemical Engineering and Processing-Process Intensification, 2023, 191: 109469.

[54]STERN A, CAPLAN K, BUSH P. Parallel operation of cyclones in cyclone dust collectors[J]. API Dust-Collector Subcommittee, 1955, 2: 41-43.

[55]KOFFMAN J R. The cleaning of engine air part 2[J]. Gas Oil Power, 1953, 3: 84-94.

[56]FENG M J, GUI C M, ZHOU Y F, et al. Numerical study on performance optimization and flow mechanism of a new cyclone separator[J/OL]. Green Chemical Engineering, 2024[2024-11-20].https://www.sciencedirect.com/science/article/pii/S266695282400030X.

[57]刘岗辉. 旋风分离器的减磨结构设计及研究[D]. 石河子: 石河子大学, 2024.

LIU G H. Design and research of friction reduction structure of cyclone separator[D]. Shihezhi: Shihezi University, 2024.

[58]CAO G, SUN G G, YUAN S W, et al. Study on the influence of spiral guide vanes on gas/particle flow characteristics in FCC cyclone separator[J]. Separation and Purification Technology, 2025, 353: 128352.

[59]SUN Z P, YANG H D, ZHANG K X, et al. Experimental and numerical investigation of the elliptical cyclone separator manufactured by 3D printing[J]. Powder Technology, 2024, 441: 119746.