张 源1a,1b, 吴 栋1a, 他旭鹏2
1. 中国矿业大学 a. 矿业工程学院, b. 煤炭精细勘探与智能开发全国重点实验室, 江苏 徐州 221116;
2. 内蒙古科技大学 矿业与煤炭学院, 内蒙古 包头 014010
引用格式:张源, 吴栋, 他旭鹏. 二氧化碳泡沫混凝土研究现状及进展[J]. 中国粉体技术, 2025, 31(6): 1-15.
ZHANG Yuan, WU Dong, TA Xupeng2, et al. Research status and progress of carbon dioxide foam concrete[J]. China Powder Science and Technology, 2025, 31(6): 1−15.
DOI:10.13732/j.issn.1008-5548.2025.06.002
收稿日期: 2025-01-13, 修回日期: 2025-02-15, 上线日期: 2025-05-27。
基金项目:国家自然科学基金项目,编号 :52074266。
第一作者简介: 张源(1985—),男,副教授,博士,博士生导师,研究方向为CO2矿化封存与利用。E-mail:5469@cumt. edu. cn。
摘要: 【目的】总结CO2泡沫混凝土(CO2 foam concrete,CFC)制备材料与工艺、固碳理论等方面的研究,分析CFC的固碳潜力,探讨 CFC 的应用前景与发展方向。【 研究现状】 综述混凝土胶凝材料、 混凝土发泡材料、 稳泡剂等 CFC 制备材料,预发泡法和混合发泡法等CFC制备工艺,CO2气泡成长和矿化过程,以及CFC固碳潜力等。【 结论与展望】认为固废替代部分水泥作为CFC胶凝材料是重要的发展方向,CO2可溶性表面活性剂和纳米粒子配合使用是CFC发泡剂的优选,预发泡是目前 CFC最常用的制备工艺; CO2的矿化是影响 CFC泡沫稳定性的主要因素; 在 CFC体系中,CO2优先与水化产物Ca(OH)2发生反应,矿化反应是造成CO2泡沫大量破裂和发泡效果不明显的直接原因;CFC碳封存潜力明显,主要体现在混凝土骨架的碳化固碳和气泡孔的储碳。提出工业固废的掺入是提高 CFC经济性的重要途径,发电、 冶金等工业废气应作为CO2的主要来源,提高固碳能力和泡沫的稳定性是CFC的研究重点。
关键词: 泡沫混凝土; 二氧化碳; 碳封存; 矿化
Abstract
Significance The rising concentrations of greenhouse gases have intensified global warming, posing a significant challenge to human society. Carbon sequestration and utilization within the building materials sector are crucial for achieving China’s dual carbon goals. CO2 mineralization and sequestration are vital components of carbon emission reduction technologies, with CO2 foam concrete (CFC) demonstrating substantial potential for large-scale CO2 sequestration. With the implementation of national energy conservation and emission reduction policies, CFC, as an energy-efficient and environmentally friendly material, offers advantages such as lightweight properties, fire resistance, and thermal insulation. Consequently, it is poised to play a significant role in construction, municipal infrastructure, tunnels, bridges, and related fields. Furthermore, the comprehensive utilization of coal-based solid waste and power plant flue gas CO2 is essential for coal-based power enterprises to achieve green, low-carbon, and circular development. This approach facilitates the resource utilization of coal-based solid waste, CO2 mineralization and storage from power plants, mine water recycling, and underground filling for disaster management.
Progress 1) Ordinary Portland cement is rarely used in CFC production. Instead, solid waste serves as a partial replacement for cementitious materials, representing a key development direction. The combination of CO2-soluble surfactants and nanoparticles is the preferred approach for CFC blowing agents. Currently, pre-foaming is the most widely employed preparation process for CFC. 2) CO2 mineralization is a primary factor influencing the stability of CFC foam. The mineralization process encompasses the stages of mixing CO2 with concrete, foaming, and concrete hardening. The growth mechanism of CO2 bubbles is complex and warrants investigation using simulation, visualization, and other technical methods. 3) Within the CFC system, CO2 preferentially reacts with the hydration product Ca(OH)2. The resultant products adhere to the surfaces of both Ca(OH)2 and C3S, leading to a gradual weakening of carbonization and hydration. Simultaneously, C2S participates in the carbonation reaction, with mineralization directly causing a significant number of CO2 foam ruptures, thereby diminishing the foaming effect. 4) The carbon sequestration potential of CFC is substantial, primarily manifested in the carbonation and carbon sequestration of the concrete skeleton, as well as the carbon storage within bubble pores. Among these factors, the carbonation and carbon sequestration of the concrete skeleton play a predominant role. Utilizing solid waste materials, such as waste concrete powder, fly ash,and slag, as substitutes for cementitious materials is crucial to reducing the environmental impact of CFC production. Furthermore, industrial waste gases from power generation and metallurgy should serve as the primary sources of CO2.
Conclusions and Prospects The future development directions of CFC are outlined as follows: 1) The incorporation of industrial solid waste into CFC production represents a significant strategy for enhancing its economic viability. CFC demonstrates potential for large-scale CO2 storage. However, energy consumption and economic efficiency remain unresolved issues. Fly ash,slag, coal gangue, and steel slag are commonly used as admixtures in CFC formulations. These materials not only enhance the performance of foam concrete but also address solid waste management challenges. Additionally, they improve the economic value of CFC while facilitating its widespread adoption. 2) CO2 derived from industrial processes such as power generation and metallurgy should be considered as primary foaming gas sources for CFC. Currently, CO2 is obtained through high-value chemical reagents or compressed gas, resulting in elevated economic costs that hinder the promotion and application of CFC technology. In contrast, thermal power plants and metallurgical industries generate abundant CO2 emissions, often treating these emissions as pollutants. Consequently, integrating CFC production into such industrial sites offers both economic and environmental
advantages. 3) Research on CFC should prioritize improving its carbon sequestration capacity and foam stability. The current mineralization rate of CO2 in concrete is relatively low due to limitations in CO2 diffusion, which primarily occurs within the surface and shallow layers of concrete. Implementing three-dimensional curing methods can address this issue by promoting deeper CO2 penetration and enhancing foam retention. Further studies should focus on understanding CFC’s cellular structure, carbon sequestration mechanisms, and modification techniques at a microscopic level to optimize its performance.
Keywords: foam concrete; carbon dioxide; carbon sequestration and storage; mineralization
参考文献(References)
[1]史才军, 卢豹, 潘萧颖, 等. 利用二氧化碳固化技术制备绿色混凝土材料和制品[J]. 江苏建筑, 2018,9(2):18-22.
SHI C J, LU B, Pan X Y, et al. Preparation of green concrete materials and products by carbon dioxide curing technology[J].Jiangsu Architecture, 2018,9(2): 18-22.
[2]张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-9.
ZHANG K, CHEN Z X, LAN H F, et al. Status and prospects of carbon capture, utilization and storage technology[J].Special Oil & Gas Reservoirs, 2023, 30(2): 1-9.
[3]张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80.
ZHANG X, LI Y, MA Q, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of Chinese Academy of Engineering, 2021, 23(6): 70-80.
[4]蒋恕, 张凯, 杜凤双, 等. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望[J]. 地球科学, 2023, 48(7):
2733-2749.
JIANG S, ZHANG K, DU F S, et al. Progress and prospects of CO2 storage and enhanced oil, gas and geothermal recovery[J]. Earth Science, 2023, 48(7): 2733-2749.
[5]马永法, 周学军, 董俊领, 等 . 黑龙江林甸地区深部咸水层 CO2地质储存条件与潜力评估[J]. 水文地质工程地质,2022, 49(6): 179-189.
MA Y F, ZHOU X J, DONG J L, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 179-189.
[6]谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2024, 49(1): 36-46.
XIE H P,ZHANG J X,GAO F,et al. Theory and technical conception of carbon-negative and high efficient backfill mining in coal mines[J]. Journal of China Coal Society, 2024, 49(1): 36-46
[7]王双明, 刘浪, 朱梦博, 等.“ 双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(1): 152-171.
WANG S M,LIU L,ZHU M B,et al. New way for green and low-carbon development of coal industry under the target of daul-carbon[J]. Journal of China Coal Society, 2024, 49(1): 152-171.
[8]他旭鹏, 张源, 万志军, 等 . 超临界 CO2发泡混凝土的制备及固碳性能研究[J]. 煤炭学报, 2024, 49(10): 4222-
4234.
TA X P, ZHANG Y, WAN Z J, et al. Preparation and carbon sequestration properties of supercritical CO2 foamed concrete[J]. Journal of China Coal Society, 2024, 49(10): 4222-4234.
[9]李天, 王智, 周涛涛. 泡沫混凝土的研究应用现状[J]. 混凝土, 2019(1): 26-29.LI T, WANG Z, ZHOU T T. Research and application of foam concrete[J]. Concrete, 2019(1): 26-29.
[10]LI T, HUANG F W, LI L, et al. Preparation and properties of sulphoaluminate cement-based foamed concrete with high performance[J]. Construction and Building Materials, 2020, 263: 120945.
[11]LIU Q, WANG Y W, SUN C, et al. Carbon sequestration and mechanical properties of foam concrete based on red mud pre-carbonation and CO2 foam bubbles[J]. Construction and Building Materials, 2024, 426: 135961.
[12]ZHANG X, LIU S W, WU K, et al. Macroscopic behavior and microscopic structure of serpentine-MgO carbon sequestration foamed concrete[J]. Journal of Building Engineering, 2024, 86: 108962.
[13]ZHANG X, LIU S W, WU K, et al. Experimental investigation into the self-carbonation mechanism of magnesium oxide carbon sequestration foamed concrete[J]. Cement and Concrete Composites, 2024, 148: 105486.
[14]WEI X B, LI J, SHI H W, et al. Experimental study on CO2 sequestration performance of alkali activated fly ash and ground granulated blast furnace slag based foam concrete[J]. Construction and Building Materials, 2024, 447: 138043.
[15]ZHAO J, LI Y Q, YANG J G, et al. Preparation of slag-based foam concrete and its carbon dioxide sequestration performance[J]. International Journal of Greenhouse Gas Control, 2024, 135: 104156.
[16]CHEN D Y, CHEN M Z, ZHANG Y L, et al. Development of an environmental foamed concrete incorporating recycled cement concrete powder with carbonation[J]. Construction and Building Materials, 2024, 422: 135833.
[17]LI H, LI J, LU Z Y, et al. Influence of foaming agent on cement and foam concrete[J]. Construction and Building Materials, 2021, 280: 122399.
[18]ZHANG J, YANG H, ZHANG S W, et al. Potential utilization of CO2 foams in developing lightweight building materials[J]. Journal of Building Engineering, 2023, 76: 107342.
[19]LIU Y, LIU Z H, RONG H, et al. Research on the foaming mechanism of microbial foaming agent and its application in foam concrete[J]. Construction and Building Materials, 2023, 379: 131041.
[20]孔来稳, 贺才豪. 泡沫混凝土发泡剂的复配及性能研究[J]. 新型建筑材料, 2020, 47(6): 67-70.
KONG L W, HE C H. Study on the compounding and properties of foaming agent for foamed concrete[J]. New Building Materials, 2020, 47(6) :67-70.
[21]HE J, LIU G Y, SANG G C, et al. Investigation on foam stability of multi-component composite foaming agent[J]. Construction and Building Materials, 2023, 391: 131799.
[22]HASHIM M, TANTRAY M. Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete[J]. Case Studies in Construction Materials, 2021, 14: e00524.
[23]FALLIANO D, DE DOMENICO D, RICCIARDI G, et al. Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density[J]. Construction and Building Materials, 2018, 165: 735-749.
[24]GUO R, XUE C H, GUO W C, et al. Preparation of foam concrete from solid wastes: physical properties and foam stability[J]. Construction and Building Materials, 2023, 408: 133733.
[25]DUCMAN V, KORAT L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents[J]. Materials Characterization, 2016, 113: 207-213.
[26]YU Y, GARCÍA B F, SARAJI S. Surfactant viscoelasticity as a key parameter to improve supercritical CO2 foam stability/foamability and performance in porous media[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104311.
[27]MAJEED T, KAMAL M S, ZHOU X, et al. A review on foam stabilizers for enhanced oil recovery[J]. Energy & Fuels,2021, 35(7): 5594-5612.
[28]CHEN Y S, ELHAG A S, WORTHEN A J, et al. High temperature CO2-in-water foams stabilized with cationic quaternary ammonium surfactants[J]. Journal of Chemical & Engineering Data, 2016, 61(8): 2761-2770.
[29]覃述兵. 矿用二氧化碳泡沫混凝土制备及巷道围岩隔热实验研究[D]. 徐州:中国矿业大学, 2023.
QIN S B. Preparation of carbon dioxide foam concrete for mining and the experimental study on the thermal insulation of the roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2023.
[30]ZHANG Y, JIANG Y, LING T C. Use of CO2 as a controlled foam stabilizer to enhance pore structure and properties of foamed concrete[J]. Cement and Concrete Composites, 2024, 145: 105356.
[31]FENEUIL B, AIMEDIEU P, SCHEEL M, et al. Stability criterion for fresh cement foams[J]. Cement and Concrete Research, 2019, 125: 105865.
[32]刘萍, 唐爱东, 王健雁, 等. 硬脂酸钙稳泡机制及其对发泡水泥保温板泡孔结构的影响[J]. 中南大学学报(自然科
学版), 2018, 49(5): 1054-1061.
LIU P, TANG A D, WANG J Y, et al. Foam stabilizing mechanism of calcium stearate and its effects on pore structure of foam cement thermal insulation board[J]. Journal of Central South University( Science and Technology), 2018, 49(5):1054-1061.
[33]SHI J Y, LIU Y C, XU H J, et al. The roles of cenosphere in ultra-lightweight foamed geopolymer concrete( UFGC)[J].Ceramics International, 2022, 48(9): 12884-12896.
[34]XIONG Y L, LI B L, CHEN C, et al. Properties of foamed concrete with Ca(OH)2 as foam stabilizer[J]. Cement and Concrete Composites, 2021, 118: 103985.
[35]SONG N, LI Z H, WANG S Q, et al. Preparation of biomass carbon dots for foam stabilizer of foamed concrete[J]. Construction and Building Materials, 2023, 364: 129853.
[36]张旋, 张贵才, 葛际江, 等. 聚合物强化CO2泡沫稳定性能研究[J]. 断块油气田, 2020, 27(6): 799-802.
ZHANG X, ZHANG G C, GE J J, et al. Research on the stability of polymer enhanced CO2 foam[J]. Fault-Block Oil Gas Field, 2020, 27: 799-802.
[37]GU X W, WANG S Y, LIU J P, et al. Effect of hydroxypropyl methyl cellulose( HPMC) as foam stabilizer on the workability and pore structure of iron tailings sand autoclaved aerated concrete[J]. Construction and Building Materials, 2023,376: 130979.
[38]他旭鹏. 超临界CO2泡沫混凝土发泡机理及其巷道围岩隔热应用研究[D]. 徐州: 中国矿业大学, 2023.
TA X P. Foaming mechanism of supercritical carbon dioxide foamed concrete and its thermal insulation application in roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2023.
[39]ROGNMO A, HELDAL S, FERNØ M. Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2 storage and oil recovery from mature oil reservoirs[J]. Fuel, 2018, 216: 621-626.
[40]JIANG L B, WANG Z, WANG Y, et al. Preparation and properties of carbon dioxide foamed concrete using nanoparticles as foam stabilizer and pre-carbonated cement slurry[J]. Cement and Concrete Composites, 2024, 151: 105585.
[41]ZHANG L, KANG J, ZHANG Y, et al. Experimental investigation of amine-surfactant CO2 foam stability enhanced by silica nanoparticles[J]. Journal of Energy Resources Technology, 2018, 140(11): 112902.
[42]ZHANG Y S, LIU Q, YE H, et al. Nanoparticles as foam stabilizer: mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108561.
[43]WANG P, YOU Q, HAN L, et al. Experimental study on the stabilization mechanisms of CO2 foams by hydrophilic silica nanoparticles[J]. Energy & Fuels, 2018, 32(3): 3709-3715.
[44]SONG N, LI Z H, YI W M, et al. Properties of foam concrete with hydrophobic starch nanoparticles as foam stabilizer[J]. Journal of Building Engineering, 2022, 56: 104811.
[45]LEE D, CHO H, LEE J, et al. Fly ash nanoparticles as a CO2 foam stabilizer[J]. Powder Technology, 2015, 283: 77-84.
[46]MEHAIRI A G, KHOSHNAZAR R, HUSEIN M M. Foamed concrete produced from CO2/N2 foam stabilized by CaCO3 nanoparticles and CTAB[J]. Construction and Building Materials, 2024, 424: 135927.
[47]GE H S, SUN Z P, LU Z C, et al. Influence and mechanism analysis of different types of water reducing agents on volume shrinkage of cement mortar[J]. Journal of Building Engineering, 2024, 82: 108204.
[48]XIAN G D, LIU Z, WANG Z, et al. Study on the performance and mechanisms of high-performance foamed concrete[J]. Materials, 2022, 15(22): 7894.
[49]张树祥, 张天昊, 张东生, 等 . 纳米 SiO2对玄武岩纤维增强煤矸石粉-矿粉基地质聚合物砂浆性能的影响[J]. 中国粉体技术, 2024, 30(6): 173-186.
ZHANG S X, ZHANG T H, ZHANG D S, et al. Effects of nano-SiO2 on properties of basalt fiber-reinforced coal ganguemineral powder-based polymer morta[r J]. China Powder Science and Technology, 2024, 30(6): 173-186.
[50]LIU Z W, ZHAO K, HU C, et al. Effect of watercement ratio on pore structure and strength of foam concrete[J].Advances in Materials Science and Engineering, 2016, 2016(1): 9520294.
[51]SELIJA K, GANDHI I S R. Comprehensive investigation into the effect of the newly developed natural foaming agents and water to solids ratio on foam concrete behavior[J]. Journal of Building Engineering, 2022, 58: 105042.
[52]SUN X W, ZHONG J J, ZHANG W L, et al. Deformation and mechanical properties of foamed concrete under various components and pore structure[J]. Journal of Building Engineering, 2024, 94: 109920.
[53]他旭鹏, 张源, 万志军, 等. 硅酸盐水泥基CO2泡沫混凝土的制备及机理[J]. 煤炭学报, 2023, 48(S2): 757-765.
TA X P, ZHANG Y, WAN Z J, et al. Preparation and mechanism of Portland cement-based CO2 foam concrete[J].Journal of China Coal Society, 2023, 48(增刊2): 757-765.
[54]TA X P, WAN Z J, ZHANG Y, et al. Effect of carbonation and foam content on CO2 foamed concrete behavior[J]. Journal of Materials Research and Technology, 2023, 23: 6014-6022.
[55]TA X P, ZHANG Y, WAN Z J, et al. Study on preparation and performance of CO2 foamed concrete for heat insulation and carbon storage[J]. Materials, 2023, 16(7): 2725.
[56]黄朋科. 超临界二氧化碳挤出发泡制备聚丙烯泡沫材料及其结构与性能研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
HUANG K P. Study on the Structures and properties of polypropylene foamsvia supercritical CO2 extrusion foaming[D].Ningbo: University of Chinese Academy of Sciences, 2020.
[57]TSIVINTZELIS I, SANXARIDOU G, PAVLIDOU E, et al. Foaming of polymers with supercritical fluids: a thermodynamic investigation[J]. The Journal of Supercritical Fluids, 2016, 110: 240-250.
[58]COLTON J S, SUH N P. The nucleation of microcellular thermoplastic foam with additives: part I: theoretical considerations[J]. Polymer Engineering & Science, 1987, 27(7): 485-492.
[59]王林艳. 二氧化碳发泡聚合物过程中的气泡成核密度泛函理论研究[D]. 北京: 北京化工大学, 2017.
WANG L Y. Density functional theory of bubble nucleation during CO2 foaming polymers[D]. Beijing: Beijing University of Chemical Technology, 2017.
[60]AMON M, DENSON C D. A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles[J]. Polymer Engineering & Science, 1984, 24(13): 1026-1034.
[61]OTSUKI Y, KANAI T. Numerical simulation of bubble growth in viscoelastic fluid with diffusion of dissolved foaming agent[J]. Polymer Engineering & Science, 2005, 45(9): 1277-1287.
[62]严庆光, 王绘芳, 郑勇福. 聚苯乙烯微孔发泡中气泡长大及冷却定型模拟[J]. 复合材料学报, 2018, 35(5): 1182-1191.
YAN Q G, WANG H F, ZHENG Y F. Numerical simulation of bubble growth and solidification in microcellular foamed polystyrene[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1182-1191.
[63]WANG C D, SHAAYEGAN V, ATAEI M, et al. Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding[J]. European Polymer Journal, 2019, 119: 189-199.
[64]PÉREZ-TAMARIT S, SOLÓRZANO E, MOKSO R, et al. In-situ understanding of pore nucleation and growth in polyurethane foams by using real-time synchrotron X-ray tomography[J]. Polymer, 2019, 166: 50-54.
[65]韩建德, 孙伟, 潘钢华. 混凝土碳化反应理论模型的研究现状及展望[J]. 硅酸盐学报, 2012, 40(8): 1143-1153.
HAN J D, SUN W, PAN G H. Recent development on theoretical model of carbonation reaction of concrete[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1143-1153.
[66]STEFFENS A, DINKLER D, AHRENS H. Modeling carbonation for corrosion risk prediction of concrete structures[J].Cement and Concrete Research, 2002, 32(6): 935-941.
[67]KUMAZAKI K. A mathematical model of carbon dioxide transport in concrete carbonation process[J]. Discrete and Continuous Dynamical Systems Series S, 2014, 7: 113-125.
[68]LI D W, LI L Y, WANG X F. Mathematical modelling of concrete carbonation with moving boundary[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104809.
[69]ZHANG Q. Mathematical modeling and numerical study of carbonation in porous concrete materials[J]. Applied Mathematics and Computation, 2016, 281: 16-27.
[70]PADE C, GUIMARAES M. The CO2 uptake of concrete in a 100 year perspective[J]. Cement and Concrete Research,2007, 37(9): 1348-1356.
[71]STEINOUR H H. Some effects of carbon dioxide on mortars and concrete:discussion[J]. Journal of American Concrete Institute, 1959, 30(2):905-907.
[72]HUNTZINGER D N, GIERKE J S, KAWATRA S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environmental Science & Technology, 2009, 43(6): 1986-1992.
[73]MONKMAN S, SHAO Y. Integration of carbon sequestration into curing process of precast concrete[J]. Canadian Journal of Civil Engineering, 2010, 37(2): 302-310.
[74]FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J].Construction and Building Materials, 2015, 76: 360-365.
[75]张源, 他旭鹏, 覃述兵, 等. CO2泡沫混凝土碳封存潜力分析[J]. 环境科学, 2023, 44(9): 5308-5315.
ZHANG Y, TA X P, QIN S B, et al. Analysis of carbon storage potential of CO2 foamed concrete[J]. Environmental Science,2023, 44(9): 5308-5315.
[76]杨春峰, 肖辉, 洪宇, 等 . 泡沫混凝土墙体生命周期评价研究[J]. 沈阳大学学报(自然科学版), 2018, 30(6):
476-480.
YANG C F, XIAO H, HONG Y, et al. Life cycle evaluation of foamed concrete wall[J]. Journal of Shenyang University(Natural Science), 2018, 30(6): 476-480.
[77]RAVIKUMAR D, ZHANG D, KEOLEIAN G, et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefi[t J]. Nature Communications, 2021, 12(1): 855.