ISSN 1008-5548

CN 37-1316/TU

最新出版

聚苯乙烯颗粒在晶圆表面的均匀沉积方法

Method for uniform deposition of polystyrene particles on wafer surface


张子恒1a,1b, 任 军1a,1b, 刘 悦2, 刘俊杰2

1.太原理工大学 a. 省部共建煤基能源清洁高效利用国家重点实验室, b. 化学工程与技术学院, 山西 太原 030024;

2. 中国计量科学研究院 环境计量中心, 北京 100029

引用格式:张子恒, 任军, 刘悦, 等. 聚苯乙烯颗粒在晶圆表面的均匀沉积方法[J]. 中国粉体技术, 2025, 31(6): 1-14.

ZHANG Ziheng, REN Jun, LIU Yue2,et al. Method for uniform deposition of polystyrene particles on wafer surface[J]. China

Powder Science and Technology, 2025, 31(6): 1−14.

DOI:10.13732/j.issn.1008-5548.2025.06.003

收稿日期: 2025-01-16, 修回日期: 2025-03-11, 上线日期: 2025-05-27。

基金项目:国家重点研发项目,编号:2023YFF0616400。

第一作者简介: 张子恒(1998—),男,硕士生,研究方向为晶圆标准物质的制备。E-mail:zhangziheng68@163. com。

通信作者简介:刘俊杰(1975—),男,副研究员,硕士,硕士生导师,研究方向为颗粒物测量及计量技术。E-mail:liujj@nim. ac. cn;

任军(1974—),男,教授,博士生导师,山西高校优秀青年学术带头人、“131”领军人才工程优秀中青年拔尖创新人才,“三晋英才”支持计划拔尖骨干人才、 山西省学术技术带头人,研究方向为碳化学与化工。E-mail:renjun@tyut. edu. cn。

摘要: 【目的】晶圆表面检测系统(scanning surface inspection system,SSIS)是半导体生产过程中质量控制的核心设备,其性能需通过晶圆标准物质(standard wafer, SW)进行校准。为了实现国内研发仪器的自主校准,迫切须要开发符合校准要求的SW,解决SSIS设备的国产化率不足的问题,更好地开展晶圆标准物质的研究和应用。【方法】 开发一套发生-沉积系统,用于制备SW;该系统采用差分电迁分级器筛选所需粒径的颗粒物样品,扫描电迁移率粒径谱仪统计粒径分布;通过沉积原理分析,改良沉积室物理参数,利用数值模拟的方法对实验操作的结果进行验证,研究颗粒沉积的控制条件对均匀沉积与沉积效率的影响。【结果】 在粒径为 100~300 nm时,统一的沉积室物理参数能够实现相似的沉积效果,而对于粒径为40~70 nm的颗粒,须采用不同的沉积室设计;旋转使得沉积斑点面积增加26%,沉积效率降低10%; 沉积均匀性会受旋转相对位置影响; 相同条件下,粒径单分散性与流量-时间比负相关; 热泳可以提高沉积效率但会显著影响校准的使用。【结论】 使用该发生-沉积系统制备的晶圆标准物质,粒径可溯源,数量分布满足SSIS校准需求。

关键词:气溶胶颗粒; 晶圆沉积; 标准物质; 数值模拟

Abstract

Significance The scanning surface inspection system( SSIS) for wafer surface is an essential tool for quality control in semiconductor manufacturing processes, and its performance evaluation requires calibration using standard wafer (SW) materials. To achieve independent calibration, there is an urgent need for China to develop SW materials that meet calibration requirements.This will address the low domestic production rate of SSIS equipment and further advance the research and application of wafer standard materials in China.

Methods In this paper, a generation-deposition system for SW preparation was developed. The system utilized a differential mobility classifier (DMC) to screen polystyrene aerosols of the desired particle size and a scanning mobility particle sizer (SMPS) to analyze particle size distribution. Through theoretical and experimental analysis, the physical parameters of the deposition chamber were optimized and validated through numerical simulations in Ansys Fluent. Moreover, the influence of operational parameters on uniform deposition and deposition efficiency was investigated.

Conclusions and Prospects When the particle size ranged from 100 to 300 nm, uniform physical parameters of the deposition chamber could achieve similar deposition results. However, for particles with sizes between 40 and 70 nm, different combinations of deposition chamber parameters were required. Deposition uniformity was influenced by the relative rotation position. Under the same conditions, particle size monodispersity was negatively correlated with the flow-to-time ratio. Increasing the deposition time improved deposition efficiency but had no impact on particle size monodispersity. Thermophoretic effect improved deposition efficiency but caused contamination, rendering the contaminated SW unsuitable for SSIS calibration. Rotation increased the deposition spot area by 26% and decreased the concentration by 10%, reducing deposition efficiency but facilitating better control of deposition time and improving distribution uniformity. Differences in particle size distribution between SSIS and SMPS were observed due to their distinct calibration principles.

Conclusion Based on the simulation and experimental results,a 2-inch wafer standard with 200 nm polystyrene particles was successfully prepared, meeting the calibration requirements. The wafer standard materials prepared using this generationdeposition system have traceable particle sizes and a quantity distribution that meets the calibration requirements of the SSIS.

Keywords: aerosol particle; wafer deposition; standard material; numerical simulation

参考文献(References)

[1]贺敏辉, 许亦鹏, 刘宗芳, 等. 半导体制造中的湿法清洗技术[J]. 智能物联技术, 2023, 6(1): 1-4, 34.

HE M H, XU Y P, LIU Z F, et al. Wet cleaning technology in semiconductor manufacturing[J]. Smart IOT, 2023, 6(1):1-4, 34.

[2]蔡颖岚, 胡伟, 张经洪, 凌勇, 等. 半导体工艺测试设备应用技术研究[J]. 设备管理与维修, 2018(12): 147-149.

CAI Y L, HU W, ZHANG J H, LING Y, et al. Research on the application technology of semiconductor process test equipmen[t J]. Equipment Management and Maintenance, 2018(12): 147-149.

[3]MULHOLLAND G W, GERMER T A, STOVER J C. Modeling, measurement, and standards for wafer inspection[C]//Government Microcircuits Applications and Critical Technologies, 2003:1-4.

[4]WU F, CAO P, DU Y, et al. Calibration and image reconstruction in a spot scanning detection system for surface defects[J].Applied Sciences, 2020, 10(7): 2503.

[5]YOOK S J, FISSAN H, ENGELKE T, et al. Classification of highly monodisperse nanoparticles of NIST-traceable sizes by TDMA and control of deposition spot size on a surface by electrophoresis[J]. Journal of Aerosol Science, 2008, 39(6):537-548.

[6]WANG J, PUI D Y H, QI C, et al. Controlled deposition of NIST-traceable nanoparticles as additional size standards forphotomask applications[C]//Metrology, Inspection, and Process Control for Microlithography XXII. SPIE, 2008, 6922:167-176.

[7]CHO Y, HONG S, LEE S, et al. Investigation of a standard particle deposition system on wafer surface and its application to wafer cleaning[J]. ECS Journal of Solid State Science and Technology, 2019, 8(12): 768-774.

[8]LEE S, CHOI S, CHO Y, et al. Uniform deposition method of monodispersed SiO2 nanoparticles on a 300 mm Si wafer surface[J]. Review of Scientific Instruments, 2021, 92: 113704.

[9]VERHAEGH W, CLERCX H. Particle contamination risk for a moving wafer[D]. Eindhoven: Eindhoven University of Technology, 2021.

[10]TAJIMA N, IIDA K, EHARA K, et al. A method to deposit a known number of polystyrene latex particles on a flat surface[J]. Aerosol Science and Technology, 2019, 53(12): 1353-1366.

[11]KANGASLUOMA J, CAI R L, JIANG J K, et al. Overview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributions[J]. Journal of Aerosol Science, 2020, 148: 105584.

[12]MUN J H, CHO D G, KIM Y J, et al. Development and calibration of differential mobility analyzer for 20 nm to 80 nm particles under low pressure conditions[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(7): 6275-6282.

[13]NOH S Y, ZAHIR M Z, RYOO B, et al. Effect of a protective shape upstream a sensor on reducing dust particle contamination of critical sensor surface[J]. Sensors and Actuators A: Physical, 2020, 312: 112126.

[14]BANAEI A A, RAHMANI M, MARTINEZ D M, et al. Inertial settling of flexible fiber suspensions[J]. Physical Review Fluids, 2020, 5(2): 024301.

[15]WAKIF A, ANIMASAUN I L, NARAYANA P V S, et al. Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids[J]. Chinese Journal of Physics, 2020, 68: 293-307.

[16]HO P Y, HUANG K H. Combined effects of thermophoresis and electrophoresis on particle deposition in mixed convection flow onto a vertical wavy plate[J]. International Communications in Heat and Mass Transfer, 2019, 101: 116-121.

[17]CHIRIFU S, INOUE M, SAKATA S, et al. Study of aerosol deposition on wafer surface: experimental analysis[J]. Transactions of the Society of Heating, Air-conditioning and Sanitary Engineers of Japan, 1988, 13(37): 21-27.

[18]OH M D, YOO K H, MYONG H K. Numerical analysis of particle deposition onto horizontal freestanding wafer surfaces heated or cooled[J]. Aerosol Science and Technology, 1996, 25(2): 141-156.

[19]彭威, 杨小勇, 王捷, 等. 高温气冷堆蒸气发生器结构内石墨粉尘的运动行为[ J]. 中国粉体技术, 2011, 17( 6):24-26, 31.

PENG W,YANG X Y,WANG J, et al. Graphite dust motion in steam generator of high temperature gas-cooled reactor[J]. China Powder Science and Technology, 2011, 17( 6): 24-26, 31.

[20]刘洪涛. 气固两相流中微细颗粒沉积与扩散特性的数值研究[D]. 重庆: 重庆大学, 2010.

LIU H T. Numerical study of deposition and diffusion characteristics of fine particles in gas-solid two-phase flow[D].Chongqing: Chongqing University, 2010.

[21]李伟. 通风管道中细微粉尘的湍流沉积规律[J]. 中国粉体技术, 2014, 20( 2): 56-60.

LI W. Turbulent deposition rule of fine dust in ventilation ducts[J]. China Powder Science and Technology, 2014, 20(2):

56-60.

[22]PARK S B, YOO K H, LEE K H. A numerical study on particle deposition onto a heated semiconductor wafer in vacuum environment[J]. Particle and Aerosol Research, 2018, 14(2): 41-47.

[23]周友行, 谢宝安, 高腾腾, 等 . 换热管表面的分形表征及积灰特性数值模拟[J]. 中国粉体技术, 2024, 30(6):85-96.

ZHOU Y H, XIE B A, GAO T T, et al. Fractal characterization of heat exchange tube surfaces and numerical simulation on ash deposition characteristics[J]. China Powder Science and Technology, 2024, 30(6): 85-96.

[24]陈林林, 魏严凇, 史晓磊, 等. 安全壳内剥蚀引起的气溶胶颗粒再悬浮[J]. 中国粉体技术, 2020, 26(5): 1-6.

CHENG L L,WEI Y S,SHI X L, et al. Aerosol resuspension behavior caused by denudation in containment[J]. China Powder Science and Technology, 2020, 26(5): 1-6.

[25]王艳. 室内颗粒物在织物表面上的沉积特性研究[D]. 西安: 西安建筑科技大学, 2020.

WANG Y. Characterisation of indoor particulate matter deposition on fabric surfaces [D]. Xi’an: Xi’an University of Architecture and Technology, 2020.