李 奇,谢 君,吴 浩,侯维强,柴宏宇,储昭贶,梁静静,李金国,孙晓峰,周亦胄
中国科学院金属研究所 师昌绪先进材料创新研究中心,辽宁 沈阳 110016
李奇,谢君,吴浩,等. 雾化法制备用于增材制造的金属粉末研究进展[J]. 中国粉体技术,2025,31(5):1-18.
LI Qi, XIE Jun, WU Hao, et al. Research progress on atomization methods for preparing metal powder used in additive manufacturing[J]. China Powder Science and Technology,2025,31(5):1−18.
DOI:10.13732/j.issn.1008-5548.2025.05.005
收稿日期: 2024-10-08, 修回日期: 2024-12-24, 上线日期: 2025-05-21。
基金项目: 云南省材料基因工程Ⅱ期项目,编号:202302AB080020;国家重点研发计划项目,编号:2023YFB3712000;2020年中国科学院青年创新促进会项目,编号:2020198。
第一作者简介: 李奇(1992—),男,助理研究员,博士,研究方向为高温合金粉体制备技术开发。E-mail:qli17b@imr.ac.cn。
通信作者简介: 李金国(1975—),男,研究员,博士,博士生导师,研究方向为高温合金增材制造。E-mail:jgli@imr.ac.cn。;
谢君(1986—),男,研究员,博士,硕士生导师,研究方向为增材制造用高温合金粉末制备与开发。E-mail:junxie@imr.ac.cn。
摘要: 【目的】 梳理广泛应用于金属增材制造粉末制备的雾化法,旨在为提升增材制造部件性能、降低成本提供参考。【研究现状】 综述气体雾化法(gas atomization,GA)、等离子旋转电极雾化法(plasma rotating electrode process,PREP)和超声雾化法(ultrasonic atomization,UA)3种雾化制备金属粉末的方法;从基本原理、技术特点、制备设备以及工艺优化等方面,详细阐述3种技术的技术特点、研究进展以及在制备高品质粉末过程中所面临的挑战。【结论与展望】随着金属增材制造技术对低成本、高质量粉体的需求日益增加,雾化技术将有更加广阔的发展空间,因此,明确雾化过程中熔体的破碎机制及凝固行为,提高雾化装备整体水平,提升雾化破碎效率,实现制粉过程关键参数的协同优化对未来雾化技术发展至关重要。
关键词: 金属增材制造; 气雾化; 等离子旋转电极雾化; 超声雾化
Abstract
Significance As an important raw material for additive manufacturing (AM), the quality of metal powder is one of the key factors influencing final product performance. With the rapid development of AM technologies, the demand for high-quality and cost-effective powders has significantly increased. The atomization method, which directly transforms molten metal into powder, is particularly suitable for AM applications. This review introduces the research progress of three typical atomization technologies: gas atomization, plasma rotating electrode process (PREP), and ultrasonic atomization (UA). While gas atomization and PREP have achieved large-scale powder production, UA stands out as the most promising powder preparation technique due to its high powder quality and low production cost.
Progress The rising demands for powder quality and cost-efficiency in AM have promoted the development of atomization techniques. Research on gas atomization mainly focuses on optimizing the structure of the atomization nozzle and clarifying the impact of key atomization parameters on powder yield and quality. For PREP, three mechanisms of powder formation have been clarified, and the effects of key factors such as equipment layout and rod speed on powder yield and morphology have been established. Additionally, researchers have explored methods to increase the rod rotational speed and prevent powder contamination. With its high process controllability and low powder preparation cost, UA has attracted significant attention. Various types of UA devices have been developed based on the fundamental principles of UA, although the hourly powder yield remains lower compared to the other two techniques.
Conclusions and Prospects Developing atomization technologies for metal powders and upgrading equipment and processes to achieve efficient and low-cost production of high-quality metal powders is a key direction for the future development of atomization methods. This paper reviews the research progress of three atomization technologies: gas atomization, PREP, and UA. The conclusions are as follows: (1) A low yield of fine powders and a high content of defective powders are the primary issues faced by gas atomization. Optimizing the structure of the atomizer to enhance gas kinetic energy efficiency and adjusting the airflow structure within the atomization chamber to avoid the formation of defective powders are crucial for improving powder quality and reducing production costs. (2) Consistently increasing the rotational speed of the electrode rod and optimizing the performance of the heat source, material supply, and chamber structure are key to PREP development. (3) UA has significant development potential, but its underlying atomization mechanism is more complex. How to optimize equipment and processes to increase powder yield is a bottleneck issue that needs to be addressed.
Keywords: metal additive manufacturing; gas atomization; plasma rotating electrode process; ultrasonic atomization
参考文献(References)
[1]NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[2]SAVOLAINEN J, COLLAN M. How additive manufacturing technology changes business models?-review of literature[J]. Additive Manufacturing, 2020, 32: 101070.
[3]胡殿印, 潘锦超, 米栋, 等. 航空发动机增材制造结构强度、 寿命评估与设计: 研究现状及展望[J]. 航空动力学报, 2022, 37(10): 2112-2126.
HU D Y, PAN J C, MI D, et al. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects[J]. Journal of Aerospace Power, 2022, 37(10): 2112-2126.
[4]SALUNKHE S, RAJAMANI D. Current trends of metal additive manufacturing in the defense, automobile, and aerospace industries[M]//Advances in Metal Additive Manufacturing. Amsterdam: Elsevier, 2023: 147-160.
[5]LEUNG C L A, MARUSSI S, TOWRIE M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing[J]. Acta Materialia, 2019, 166: 294-305.
[6]TAN J H, WONG W L E, DALGARNO K W. An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J]. Additive Manufacturing, 2017, 18: 228-255.
[7]KIANIAN B, Wohlers report 2017: 3D printing and additive manufacturing state of the industry[R]. Annual Worldwide Pro-gress Report: Chapters Titles: The Middle East, and Other Countries, Colorado, USA, 2017.
[8]GORJI N E, SAXENA P, CORFIELD M, et al. A new method for assessing the recyclability of powders within Powder Bed Fusion process[J]. Materials Characterization, 2020, 161: 110167.
[9]ARDILA L C, GARCIANDIA F, GONZÁLEZ-DÍAZ J B, et al. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting[J]. Physics Procedia, 2014, 56: 99-107.
[10]SAMUEL J J, MULLIS A M, BORMAN D J. CFD modelling of Close-Coupled Gas Atomisation (CCGA) process by emplo-ying the Euler-Lagrange approach to understand melt flow instabilities[J]. Chemical Engineering Science, 2024, 295: 120205.
[11]LIU J Q, WANG P, DONG Y N, et al. Investigation on close-coupled gas atomization for Fe-based amorphous powder production via simulation and industrial trials: part I. melt breakup behaviors during primary atomization[J]. Journal of Materials Research and Technology, 2023, 27: 6568-6580.
[12]张朔, 高阳, 马佳俊, 等. 雾化法制备金属粉末及其研究进展[J]. 郑州航空工业管理学院学报, 2023, 41(5): 75-86.
ZHANG S, GAO Y, MA J J, et al. Preparation of metal powder by atomization and its research progress[J]. Journal of Zhengzhou University of Aeronautics, 2023, 41(5): 75-86.
[13]PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6): 741-757.
[14]LUO S, OUYANG Y, LAI S Y, et al. 3D numerical modeling of gas atomization process for powder preparation based on similarity theory[J]. Powder Technology, 2024, 433: 119244.
[15]SCHMEHL R, MAIER G, WITTIG S. CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor[J]. Eighth International Conference on Liquid Atomization and Spray Systems, ICLASS 2000, 2000(7): 918-926.
[16]王军峰. VIGA雾化系统的堵塞机理及工艺优化研究[D]. 北京: 北京科技大学, 2023.
WANG J F. Study on blocking mechanism and process optimization of VIGA atomization system[D]. Beijing: University of Science and Technology Beijing, 2023.
[17]AYDIN O, UNAL R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior[J]. Computers & Fluids, 2011, 42(1): 37-43.
[18]ZERWAS A A, DA SILVA F C, GUARDANI R, et al. Impact of the gas atomizer nozzle configuration on metal powder production for additive manufacturing[J]. Powder Technology, 2024, 443: 119974.
[19]URIONABARRENETXEA E, MARTÍN J M, AVELLO A, et al. Simulation and validation of the gas flow in close-coupled gas atomisation process: influence of the inlet gas pressure and the throat width of the supersonic gas nozzle[J]. Powder Technology, 2022, 407: 117688.
[20]吴嘉伦.EIGA高温合金细粉收得率与粉体流动性优化及机理研究[D].北京:北京科技大学,2023.
WU J L. Study on the optimization and mechanism of EIGA superalloy fine powder yield and powder fluidity[D]. Beijing: University of Science and Technology Beijing, 2023.
[21]徐金鑫, 陈超越, 沈鹭宇, 等. 层流气体雾化制粉工艺粉末形貌及雾化机理[J]. 物理学报, 2021, 70(14): 134-148.XU J X, CHEN C Y, SHEN L Y, et al. Atomization mechanism and powder morphology in laminar flow gas atomization[J]. Acta Physica Sinica, 2021, 70(14): 140201.
[22]WANG P, ZHOU X L, LI X G, et al. Numerical and experimental investigation of close-coupled twin-nozzle gas atomization towards fine high-entropy alloy powder production[J]. Journal of Materials Processing Technology, 2024, 324: 118238.
[23]赵文军. 喷射沉积气体流场与雾化机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
ZHAO W J. Study on flow field and atomization mechanism of spray deposition gas[D]. Harbin: Harbin Institute of Technology, 2012.
[24]LIU J Q, DONG Y N, WANG P, et al. Simulation and experiment investigations on fabrication of Fe-based amorphous powders by a novel atomization process equipped with assisted gas nozzles[J]. Journal of Iron and Steel Research International, 2023, 30(6): 1142-1155.
[25]BECKERS D, ELLENDT N, FRITSCHING U, et al. Impact of process flow conditions on particle morphology in metal powder production via gas atomization[J]. Advanced Powder Technology, 2020, 31(1): 300-311.
[26]LUBANSKA H. Correlation of spray ring data for gas atomization of liquid metals[J]. JOM, 1970, 22(2): 45-49.
[27]KISHIDAKA H. Theory and production of atomized iron powder, in: proceedings of the multidisciplinary meeting on sintered metals and magnetic materials [J]. Japan Society for Powder and Powder Metallurgy, 1972, 19: 19-24.
[28]URIONABARRENETXEA E, AVELLO A, RIVAS A, et al. Experimental study of the influence of operational and geometric variables on the powders produced by close-coupled gas atomisation[J]. Materials & Design, 2021, 199: 109441.
[29]PRASHANTH W S, THOTARATH S L, SARKAR S, et al. Experimental investigation on the effect of melt delivery tube position on liquid metal atomization[J]. Advanced Powder Technology, 2021, 32(3): 693-701.
[30]ZHAO T C, CHEN C G, LIU X H, et al. Effect of gas Mach number on the flow field of close-coupled gas atomization, particle size and cooling rate of as-atomized powder: simulation and experiment[J]. Advanced Powder Technology, 2023, 34(5): 104007.
[31]HUA J S, GOBBER F S, ACTIS GRANDE M, et al. A numerical modeling framework for predicting the effects of operational parameters on particle size distribution in the gas atomization process for Nickel-Silicon alloys[J]. Powder Technology, 2024, 435: 119408.
[32]LUO S, OUYANG Y, YANG H H, et al. Predicting the element loss in aluminum (AA2195) powder produced by gas atomization with a numerical model[J]. Powder Technology, 2023, 430: 119013.
[33]TAMURA R, OSADA T, MINAGAWA K, et al. Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy[J]. Materials & Design, 2021, 198: 109290.
[34]HANN D B, CHERDANTSEV A V, AZZOPARDI B J. Study of bubbles entrapped into a gas-sheared liquid film[J]. International Journal of Multiphase Flow, 2018, 108: 181-201.
[35]黎兴刚, 刘畅, 朱强. 面向金属增材制造的气体雾化制粉技术研究进展[J]. 航空制造技术, 2019, 62(22): 22-34.
LI X G, LIU C, ZHU Q. Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(22): 22-34.
[36]ZHANG L C, XU W Y, LI Z, et al. Mechanism of rapidly solidified satellites formation in gas atomized powders: simulation and characterization[J]. Powder Technology, 2023, 418: 118162.
[37]金莹, 刘平, 史金光, 等. 雾化压力对电极感应熔炼气雾化TC4粉末形貌与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 312-317.
JIN Y, LIU P, SHI J G, et al. Effects of gas-atomized pressure on morphology and properties of TC4 powder prepared by electrode-induced gas atomization[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 312-317.
[38]WU J L, XIA M, WANG J F, et al. Effect of electrode induction melting gas atomization on powder quality: satellite formation mechanism and pressure[J]. Materials, 2023, 16(6): 2499.
[39]赫新宇, 黎兴刚, 黄禹赫, 等. 气体雾化制粉工艺中基于气体整流的卫星粉控制技术[J]. 粉末冶金技术, 2022, 40(4): 302-317.
HE X Y, LI X G, HUANG Y H, et al. Satellite-particle control technique based on gas-flow-regulation during gas atomization process[J]. Powder Metallurgy Technology, 2022, 40(4): 302-317.
[40]乔振兴, 刘增林, 张德金, 等. 等离子旋转电极雾化制备H13合金特种粉的特性表征[J]. 粉末冶金工业, 2024, 34(3): 101-105.
QIAO Z X, LIU Z L, ZHANG D J, et al. Characterization of H13 alloy special powders prepared by plasma rotating electrode atomization[J]. Powder Metallurgy Industry, 2024, 34(3): 101-105.
[41]LIU J X, YU Q B, GUO Q. Experimental investigation of liquid disintegration by rotary cups[J]. Chemical Engineering Science, 2012, 73: 44-50.
[42]FROST A R. Rotary atomization in the ligament formation mode[J]. Journal of Agricultural Engineering Research, 1981, 26(1): 63-78.
[43] RUAN G, LIU C, QU H Q, et al. A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process[J]. Materials Science and Engineering: A, 2022, 850: 143589.
[44]曹修全, 何润东, 陈林. 直流电弧等离子体发生器结构设计及其关键技术研究[J]. 机械, 2020, 47(5): 45-53.
CAO X Q, HE R D, CHEN L. Study on the design and key technologies of DC plasma torches[J]. Machinery, 2020, 47(5): 45-53.
[45]汤慧萍. 等离子旋转电极制粉技术研究进展[J]. 粉末冶金技术, 2023, 41(1): 2-11, 54.
TANG H P. Progress of plasma rotating electrode processing technology[J]. Powder Metallurgy Technology, 2023, 41(1):2-11, 54.
[46]杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状[J]. 粉末冶金工业, 2021, 31(4): 88-93.
YANG H T, LU Z H, SUN Z Y, et al. Domestic research status of plasma rotation electrode process equipment[J]. Powder Metallurgy Industry, 2021, 31(4): 88-93.
[47]孙念光,陈斌科,向长淑,等.等离子旋转电极雾化制粉技术现状和创新[J]. 粉末冶金工业, 2020, 30(5): 84-87.
SUN N G, CHEN B K, XIANG C S, et al. The current situation and innovation of plasma rotating electrode processing technology[J]. Powder Metallurgy Industry, 2020, 30(5): 84-87.
[48]戴煜, 李礼. 金属基3D打印粉体材料制备技术现状及发展趋势[J]. 新材料产业, 2016(6): 23-29.
DAI Y, LI L. Present situation and development trend of preparation technology of metal-based 3D printing powder materials[J]. Advanced Materials Industry, 2016(6): 23-29.
[49]孙浩智.等离子旋转电极雾化制粉高速旋转驱动机构的设计与分析[J]. 机械研究与应用, 2022, 35(2): 35-37, 40.
SUN H Z. Design and analysis of high speed rotary driving mechanism for milling by plasma rotary electrode[J]. Mechanical Research & Application, 2022, 35(2): 35-37, 40.
[50]CUI Y J, ZHAO Y F, NUMATA H, et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder[J]. Powder Technology, 2020, 376: 363-372.
[51]NIE Y, TANG J J, TENG J W, et al. Particle defects and related properties of metallic powders produced by plasma rotating electrode process[J]. Advanced Powder Technology, 2020, 31(7): 2912-2920.
[52]CUI Y J, ZHAO Y F, NUMATA H, et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process[J]. Powder Technology, 2021, 393: 301-311.
[53]TANG J J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, 2019, 30(10): 2330-2337.
[54]LIU Y, LIANG S J, HAN Z Y, et al. A novel model of calculating particle sizes in plasma rotating electrode process for superalloys[J]. Powder Technology, 2018, 336: 406-414.
[55]陈焕铭, 胡本芙, 李慧英. 等离子旋转电极雾化熔滴凝固过程的数值计算[J]. 兵器材料科学与工程, 2005, 28(1):21-24.
CHEN H M, HU B F ,LI H Y. Numerical analysis of droplet solidification process during PREP[J]. Ordnance Material Science and Engineering, 2005, 28(1): 21-24.
[56]杨星波, 朱纪磊, 陈斌科, 等. 等离子旋转电极雾化技术及粉末粒度控制研究现状[J]. 粉末冶金工业, 2022, 32(2):90-95.
YANG X B, ZHU J L, CHEN B K, et al. Research status of plasma rotating electrode atomization technology and powder particle size control[J]. Powder Metallurgy Industry, 2022, 32(2): 90-95.
[57]高胜东, 郭思琪, 王洪淼. 超声雾化制备高性能球形金属微粉的研究进展[J]. 材料导报, 2020, 34(23): 23131-23137.
GAO S D, GUO S Q, WANG H M. Research progress on producing fine spherical metal powder by ultrasonic atomization[J]. Materials Reports, 2020, 34(23): 23131-23137.
[58]RAMISETTY K A, PANDIT A B, GOGATE P R. Investigations into ultrasound induced atomization[J]. Ultrasonics Sonochemistry, 2013, 20(1): 254-264.
[59]PRIYADARSHI A, BIN SHAHRANI S, CHOMA T, et al. New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing[J]. Additive Manufacturing, 2024, 83: 104033.
[60]LANG R J. Ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1962, 34(1): 6-8.
[61]ZHANG Y, YUAN S M, WANG L Z. Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization[J]. Experimental Thermal and Fluid Science, 2021, 120: 110219.
[62]BAUCKHAGE K, ANDERSEN O, HANSMANN S, et al. Production of fine powders by ultrasonic standing wave atomization[J]. Powder Technology, 1996, 86(1): 77-86.
[63]CACCIOPPOLI G, CLAUSEN B, BONJOUR C. Powder production: ultrasonic atomization of metallic melts: modeling andcase studies[C]//European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings. The European Powder Metallurgy Association, 2003, 3: 1.
[64]KHARITONOV A V, SHEIKHALIEV S M. Production of metal powders from melts by centrifugal atomization[J]. Soviet Powder Metallurgy and Metal Ceramics, 1985, 24(12): 883-887.
[65]ENDO A, YANAGIMOTO M, ASAMI T, et al. Noncontact atomization of droplets using an aerial ultrasonic source with two vibrating plates[J]. Japanese Journal of Applied Physics, 2015, 54(7S1): 07HE13.
[66]UWE G, GERT S, BJORN M, et al. Ultrasonic standing wave spraying arangement: United States Patent, US0005766 A1[P]. 2006.
[67]高胜东, 董国军, 郭思琪, 等. 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法: CN114147231A[P]. 2022-03-08.
GAO S D, DONG G J, GUO S Q, et al. Device and method for preparing metal powder by ultrasonic standing wave array atomization:CN114147231A[P]. 2022-03-08.
[68]BAŁASZ B, BIELECKI M, GULBIŃSKI W, et al. Comparison of ultrasonic and other atomization methods in metal powder production[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2023, 116(1): 11-24.
[69]AVVARU B, PATIL M N, GOGATE P R, et al. Ultrasonic atomization: effect of liquid phase properties[J]. Ultrasonics, 2006, 44(2): 146-158.
[70]WISUTMETHANGOON S, PLOOKPHOL T, SUNGKHAPHAITOON P. Production of SAC305 powder by ultrasonic atomization[J]. Powder Technology, 2011, 209(1/2/3): 105-111.
[71]郭思琪. 超声驻波作用下液滴破碎过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
GUO S Q. Study on droplet breaking process under the action of ultrasonic standing wave[D]. Harbin: Harbin Institute of Technology, 2020.
[72]ANDERSEN O, HANSMANN S, BAUCKHAGE K. Production of fine particles from melts of metals or highly viscous fluids by ultrasonic standing wave atomization[J]. Particle & Particle Systems Characterization, 1996, 13(3): 217-223.