ISSN 1008-5548

CN 37-1316/TU

最新出版

飞秒激光切割金刚石-碳化硅复合材料的损伤机制

Damage mechanisms of diamond-silicon carbide composites during  femtosecond laser cutting


邢应昶,杜宇航,王营营,吴俊彦,史国普

济南大学 材料科学与工程学院,山东 济南250022


引用格式:

邢应昶,杜宇航,王营营,等. 飞秒激光切割金刚石-碳化硅复合材料的损伤机制[J]. 中国粉体技术,2025,31(5):1-8. 

XING Yingchang, DU Yuhang, WANG Yingying, et al. Damage mechanisms of diamond-silicon carbide composites during femtosecond laser cutting[J]. China Powder Science and Technology,2025,31(5):1−8.

DOI:10.13732/j.issn.1008-5548.2025.05.015


收稿日期:2025-05-02,修回日期:2025-05-08,上线日期:2025-05-29。

基金项目:国家自然科学基金项目,编号:52371113;山东省自然科学基金项目,编号: ZR2019MEM055。

作者简介:邢应昶(2001—),男,硕士生,研究方向为金刚石-碳化硅复合材料。E-mail:xingyingchang@163. com。

通信作者:史国普(1981—),男,副教授,博士,硕士生导师,研究方向为陶瓷基金属复合材料、石膏胶凝材料。E-mail: ss_shigp@ujn. edu. cn。



摘要:【目的】 研究飞秒激光切割金刚石-碳化硅复合材料的损伤机制,解决金刚石-碳化硅复合材料因超硬特性、优异热性能而难以高效加工的问题。【方法】 通过飞秒激光切割实验,对不同功率激光切割后的样品进行晶体结构、表面形貌、表面粗糙度表征实验,系统分析激光功率对材料表面质量与晶体结构的影响。【结果】 低功率(2 800 W)时激光切割能轻微改善复合材料表面粗糙度Ra( 从52. 9 nm变为49. 4 nm);激光功率大于3 000 W时,由于热效应导致样品表面的熔融加剧,深沟槽与溅射显著,粗糙度骤增至375 nm; X射线衍射显示,随功率提升,金刚石石墨化增强,碳化硅衍射峰强度减弱甚至消失;高功率激光引发热应力失配与异质相分解,加剧界面损伤。【结论】 优化激光功率可平衡切割效率与表面质量,利于金刚石-碳化硅复合材料的高效加工。

关键词:飞秒激光切割;金刚石-碳化硅复合材料;表面粗糙度;石墨化;晶体结构;损伤机制


Abstract

Objective This study systematically investigates the damage mechanisms of diamond-silicon carbide (SiC) composites during femtosecond laser cutting with a focus on how laser power affects surface morphology, roughness, and crystallographic structure.By correlating laser parameters with the material response, the study aims to offer theoretical insights for optimizing processing conditions, thereby balancing cutting efficiency and surface quality in ultrahard composites.

Methods Diamond-SiC composites were synthesized via silicon vapor infiltration (SVI). A porous diamond preform with an average particle size of 50 μm, was infiltrated with silicon vapor at 1 600 ℃ under vacuum, resulting in a dense composite with a final density of 3. 05 g/cm3. Specimens were polished to a surface roughness (Ra )≤1 μm before laser processing. Femtosecond laser cutting was performed under four power levels (0 W,2 800 W,3 000 W,3 200 W) with fixed parameters: a wavelength of 1 064 nm, repetition frequency of 3 kHz, pulse width of 30 μs, and scanning speed of 50 mm/min. For post-processing characterization, X-ray diffraction (XRD) was employed for phase analysis, scanning electron microscopy (SEM) was utilized for surface morphology evaluation, and atomic force microscopy (AFM) was applied for 3D roughness quantification.

Results and Discussion 

The initial surface roughness (Ra ) of unprocessed samples was measured as 52. 9 nm. At 2 800 W laser power,Ra slightly decreased to 49. 4 nm due to localized laser-induced smoothing effects. However, when the power exceeded 3 000 W,Ra surged to 122 nm (3 000 W) and 375 nm (3 200 W), which was attributed to intensified melting, sputtering, and thermal stress-induced irregularities. AFM analysis revealed the formation of wave-like textures and deep grooves on  

surfaces processed at higher powers, confirming severe surface degradation. XRD analysis identified diamond (C), SiC, silicon (Si), and graphite (GCB). Unprocessed samples showed dominant peaks corresponding to diamond (111,220) and SiC (002,111,200). At 2 800 W, minor graphite peaks emerged, indicating partial diamond-to-graphite transformation (sp3→sp2). At 3 000 W, graphite content increased significantly, accompanied by weakening SiC diffraction intensities. At 3 200 W, graphite became the dominant phase while certain SiC peaks disappeared, suggesting phase decomposition or amorphization. SEM images of unprocessed surfaces displayed uniform microtextures. At 2 800 W, fine grooves and localized melting were observed.At 3 000 W, melt pools expanded, and irregular trenches formed. At 3 200 W, extensive sputtering and non-uniform material removal resulted in chaotic surface structures. AFM further highlighted re-solidified molten regions with blurred grain boundaries that correlated with increased roughness. Low-power cutting (≤2 800 W) achieved “cold processing” via confined energy deposition, minimizing thermal diffusion. In contrast, high-power cutting (>3 000 W) induced significant thermal mismatch between diamond (thermal conductivity of 2 000 W/(m·K)) and SiC (490 W/(m·K)), generating interfacial stresses that promoted delamination. Excessive heat accumulation also accelerated diamond graphitization and SiC decomposition, ultimately degrading the material’s mechanical and thermal properties.

Conclusion The surface quality and structural integrity in diamond-SiC composites are controlled by laser power levels. Optimal surface smoothing is achieved at 2 800 W (Ra=49. 4 nm), while higher powers exceeding 3 000 W lead to significantly increased roughness (Ra>120 nm) due to thermal damage mechanisms. Phase transformations, particularly diamond graphitization and SiC decomposition, intensify with increasing power, fundamentally altering material functionality. These findings highlight the delicate balance required in laser processing parameters, and the trade-off between cutting efficiency and surface precision is influenced by the interplay between thermal stress, phase dynamics, and gas-assisted melt removal.

Keywords:femtosecond laser processing; diamond-silicon carbide composites; surface roughness; graphitization; crystal structure; damage mechanism



参考文献(References)

[1]HE X B, ZHANG Z J, LIU P F, et al. Research on maximizing the diamond content of diamond/SiC composite[J]. Journal of the European Ceramic Society,2022,42(12):3127-3134.

[2]PAKNEJAD M, AZARHOUSHANG B, ZAHEDI A, et al. Laser-assisted surface grinding of innovative superhard SiC-bonded diamond (DSiC) materials[J]. Ceramics International,2024,50(6):18391-18407.

[3]ZHANG J G, FU Y F, CHEN X, et al. Investigation of the material removal process in in-situ laser-assisted diamond cutting of reaction-bonded silicon carbide[J]. Journal of the European Ceramic Society,2023,43(1):112-130

[4]CHENG K, LIU J K, CAO K Q, et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film[J]. Physical Review B,2018,98(18):184106.

[5]李廷余,吕国敏,王侃. 激光切割 SiC/Al 复合材料的温度场仿真分析[J]. 现代制造技术与装备,2024(9):86-88,104.

LI T Y, LYU G M, WANG K. Simulation analysis of temperature field in laser cutting of SiC/Al composites[J]. Modern Manufacturing Technology and Equipment,2024(9):86-88,104.

[6]WERNER K, GRUZDEV V, TALISA N, et al. Single-shot multi-stage damage and ablation of silicon by femtosecond midinfrared laser pulses[J]. Scientific Reports,2019(9):19993.

[7]LIU C L, KE J Y, YIN T F, et al. Cutting mechanism of reaction-bonded silicon carbide in laser-assisted ultra-precision machining[J]. International Journal of Machine Tools & Manufacture,2024,203:104219.

[8]王景磊,庞博,黄树涛. 激光切割 SiCp/Al 复合材料的工艺研究[J]. 工具技术,2022,56(7):64-74,94.

WANG J L, PANG B, HUANG S T. Study on laser cutting process of SiCₚ/Al composites[J]. Tool Engineering,2022,56(7):64-74,94.

[9]ARAÚJO M, MERKEL M, RIEGEL H. On the numerical simulation of laser beam cutting of hollow sphere structures[J].Materials Science & Engineering Technology,2013,44(5):491-496.

[10]DAI H F, CHEN G Y, LI S B, et al. Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation[J]. RSC Advances,2017,43(7):15596-15612.

[11]FU C H, SEALY M P, GUO Y B, et al. Finite element simulation and experimental validation of pulsed laser cutting of nitinol[J]. Journal of Manufacturing Processes,2015,27(8):81-86.

[12]LEE D, PATWA R, HERFURTH H, et al. Three dimensional simulation of high speed remote laser cutting of cathode for lithium-ion batteries[J]. Journal of Laser Applications,2016,28(3):032010.

[13]杨东永,赵灯,张增磊,等. 激光切割不锈钢断面特性的仿真研究[J]. 科学技术创新,2024,12(2):107-110.

YANG D Y, ZHAO D, ZHANG Z L, et al. Simulation study on section characteristics of laser cutting stainless steel[J].Science and Technology Innovation,2024,13(24):107-110.

[14]AIZAWA T, SHIRATORI T, KIRA Y, et al. Femtosecond laser trimming with simultaneous nanostructuring to fine piercing punch to electrical amorphous steel sheets[J]. Micromachines,2021,12(5):568.

[15]JIN T Y, CHEN J Y, ZHAO T, et al. Nanotwinned diamond cutting tool processed by femtosecond pulsed laser milling with trochoidal trajectory[J]. Journal of Materials Processing Technology,2021,294(3):117115.

[16]MILLS B, HEATH D J, FEINAEUGLE M, et al. Laser ablation via programmable image projection for submicron dimension machining in diamond[J]. Journal of Laser Applications,2014,26(4):041501.

[17]NABETANI S, AOYAMA H, UEDA M, et al. Development of a simulation method for three-dimensional shape generation by femtosecond laser ablation on binderless nano-polycrystalline diamond[J]. Precision Engineering,2021,67(7):262-268.

[18]LIU Y Y, WANG C Y, LIU T S. Effect of annealing on quality enhancement of micro-machining green alumina ceramics by laser ablation[J]. Ceramics International,2021,47(3):30273-30286.

[19]黄宥伦,杨元政. 铁基非晶纳米晶磁芯激光切割温度场仿真研究[J]. 热加工工艺,2024,53(9):45-49.

HUANG Y L, YANG Y Z. Simulation study on temperature field of laser cutting iron-based amorphous nanocrystalline core[J]. Hot Working Technology,2024,53(9):45-49.

[20]WANG Q W, YANG Y, YAO P, et al. Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser[J]. Tribology International,2021,154(6):106720.

[21]ZHAO Y, LIU H G, YU T B, et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation[J]. Optics & Laser Technology,2021,140(8):107014.

[22]汪于涛,王丽,骆公序,等. 皮秒激光单晶硅切割工艺研究[J]. 应用激光,2020,40(4):817-827.

WANG Y T, WANG L, LUO G X, et al. Study on picosecond laser cutting process of monocrystalline silicon [J]. Applied Laser,2020,40(4):817-827.

[23]汪于涛. 皮秒激光多光束并行切割硅片工艺研究[J]. 应用激光,2023,43(11):1108-1113.

WANG Y T. Study on picosecond laser multi-beam parallel cutting process of silicon wafers [J]. Applied Laser,2023,43(11):1108-1113.