ISSN 1008-5548

CN 37-1316/TU

最新出版

硅藻土复合催化材料在有机污水治理中的应用

Application of diatomite composite catalytic materials in organic wastewater treatment


闫良国1 ,任丽瑶1 ,于 欢2 ,苑芳惠3 ,谭 心4 ,操玲玲1 ,于子函1 ,宋 雯1

1. 济南大学 水利与环境学院,山东 济南 250022;2. 山东省工程咨询院,山东 济南 250013;

3. 日照市政务服务中心,山东 日照 276800;4. 山东省资源环境建设集团有限公司,山东 济南 250100


引用格式:

闫良国,任丽瑶,于欢,等. 硅藻土复合催化材料在有机污水治理中的应用[J]. 中国粉体技术,2025,31(4):1-12.

YAN Liangguo, REN Liyao, YU Huan, et al. Application of diatomite composite catalytic materials in organic wastewater treatment[J]. China Powder Science and Technology,2025,31(4):1−12.

DOI:10.13732/j.issn.1008-5548.2025.04.011

收稿日期:2024-01-01,修回日期:2024-02-15,上线日期:2025-05-19。

基金项目:国家自然科学基金项目,编号:52000087;山东省自然科学基金项目,编号: ZR2020QE229。

第一作者简介:闫良国(1971—),男,教授,博士,博士生导师,研究方向为水污染控制技术、环境功能材料。E-mail:chm_yanlg@ujn.edu. cn。

通信作者简介:宋雯(1990—),女,讲师,博士,硕士生导师,研究方向为环境功能材料。E-mail:stu_songw@ujn. edu. cn。


摘要:【目的】 开展硅藻土复合催化材料在光催化和过硫酸盐催化技术中的应用研究,实现水体中难降解有机物的高效去除,解决日益严重的有机水污染问题。【研究现状】 综述硅藻土的物理、化学性质;概况硅藻土复合催化材料在光催化工艺中的应用,包括使用硅藻土作为载体来负载二氧化钛、类石墨相氮化碳、金属化合物和铋基材料等半导体材料,以及硅藻土复合催化材料在过硫酸盐催化工艺中的应用,包括使用硅藻土作为载体负载钴基、铁基、锰基金属;总结硅藻土复合催化材料对有机染料、农药、内分泌干扰物等有机污染物的降解效果与作用机制。【结论与展望】提出应进一步探索硅藻土复合催化材料的改性方法,优化材料结构与性能,扩大材料在水环境治理中的应用范围;认为应加强硅藻土复合催化材料与其他环境治理技术的结合,为水环境污染治理提供更为全面和高效的解决方案。

关键词:硅藻土;有机污染物;光催化;过硫酸盐

Abstract

Significance Advanced oxidation technology has garnered significant scientific and technological interest due to its excellent physical, mechanical, and chemical properties, making it highly promising for applications in water and air pollution treatment. Specifically, photocatalysis and persulfate activation catalysis stand out as highly effective methods for addressing environmental challenges, such as heavy metal ion removal, organic wastewater purification, and degradation of harmful airborne organic compounds. These techniques are widely recognized for their simplicity, high efficiency, and cost-effectiveness. However, despite these advantages, limitations remain, such as easy aggregation and instability of catalysts, which hinders the optimization of oxidation processes, driving the exploration of alternative catalytic materials. Among all the candidates, diatomite-based composites have emerged as a popular choice for catalyst substrates. Derived from natural minerals, diatomite composites demonstrate excellent stability, high specific surface area, and superior chemical activity, making them a research hotspot in organic wastewater treatment over the past decade. These properties also position them as a transformative solution for enhancing the efficiency and sustainability of water treatment processes.

Progress In photocatalysis and persulfate activation, various modification methods have been employed to optimize the structure and properties of diatomite composite catalysts. In photocatalysis, diatomite composites typically incorporate bismuth-based semiconductors, TiO2, graphitic carbon nitride (g-C3N4), and metal compounds, synergistically enhancing photocatalytic performance. In persulfate activation, diatomite composites primarily serve as a support for metal bases, including cobalt (Co), iron (Fe), manganese (Mn), and cerium (Ce). As a photocatalytic material, diatomite forms an adsorption-photocatalytic collaborative system, providing abundant active sites, enhancing light absorption, and improving photocatalytic efficiency by inhibiting electron-hole recombination. As a carrier for bimetallic persulfate activation, diatomite synergizes with various transition metals, preventing metal ion agglomeration and leaching. Its unique interconnected porous structure and oxygen vacancies ensure low charge transport resistance, while creating numerous exposed edges and sharp corners. This structural arrangement significantly expands the material's accessible spaces and increases the number of active edge sites. Additionally, its open diffusion channels and abundant hydroxyl groups reduce the migration distance of reactive oxygen species (ROS), enhancing organic pollutant degradation efficiency. Diatomite composites exhibit remarkable degradation performance for various organic pollutants, including dyes, pesticides, antibiotics, and endocrine disruptors, achieving degradation rates of over 80%. Moreover, these composites demonstrate excellent recyclability and stability, making them highly suitable for practical applications. Their unique properties also facilitate their separation and recovery from treated water, ensuring sustainability and cost-effectiveness.

Conclusions and Prospects Over the past decade, significant progress has been made in diatomite composite catalytic materials, unlocking new applications. The incorporation of organic compounds, semiconductors, and metals into diatomite has improved its catalytic efficacy. Future research should focus on exploring synergistic effects in complex catalytic systems, refining diatomite modification methods, optimizing their structure and performance, and leveraging multi-system cooperation processes. Integrating these composites with other environmental treatment technologies is also crucial. Although laboratory results are promising, maintaining high efficiency in actual applications with complex and variable water environments requires further studies. Moreover, exploring scalable and high-yield preparation methods for industrial production and application remains a key research focus.

Keywords:diatomite; organic pollutant; photocatalysis; persulfate


参考文献(References)

[1]AFZAL S, JIN L Y, PAN K, et al. CoM/diatomite (M= Mg and Al) for the activation of peroxymono-sulfate to degrade atrazine in water: effect of preparation method, role of acidic/basic sites, and catalytic mechanism [J]. Applied Surface Science, 2022, 600: 154026.

[2]LI S, YANG Y L, ZHENG H S, et al. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate [J]. Chemosphere, 2022, 297: 134214.

[3]徐倚晴,张先伟,王港,等 . 硅藻土的微观结构特征及其对物理性质的影响[J]. 岩土力学,2023,44(12):3501-3511

XU Y Q, ZHANG X W, WANG G, et al. Microscopic structure and its effects on physical properties of diatomaceous soil [J]. Rock and Soil Mechanics, 2023, 44(12): 3501-3511.

[4]OU M R, LI W Y, ZHANG Z H, et al. β-Cyclodextrin and diatomite immobilized in sodium alginate biosorbent for selective uranium(VI) adsorption in aqueous solution [J]. International Journal of Biological Macromolecules, 2022, 222: 2006-2016.

[5]ZHANG X B, WANG Y L, WU S H, et al. Efficient removal of arsenic and phosphate contaminants by diatomite-modified schwertmannite [J]. Journal of Environmental Chemical Engineering, 2022,10(6): 108808.

[6]DAI X J, GU D C, ZHOU Q, et al. Interfacial heterojunction-engineered magnetic alpha-Fe2O3 @NiFe LDH@biotemplate catalyst for heterogeneous photocatalytic activated persulfate removal of organic pollutants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679: 132534.

[7]ZHU B J, CHEN S H, LI C X, et al. Non-metallic hollow porous sphere loaded CN/catalytic ozonation synergistic photocatalytic system: enhanced treatment of emerging pollutants by three-stage cyclic reaction mechanism [J]. Applied Catalysis B: Environmental, 2022, 318: 121881.

[8]PU X Y, DANG Q E, LIU C S, et al. Selective capture of mercury (II) in aqueous media using nanoporous diatomite modified by allyl thiourea [J]. Journal of Materials Science, 2022, 57(20): 9246-9264.

[9]SUN Z M, YANG X P, ZHANG G X, et al. A novel method for purification of low grade diatomite powders in centrifugal fields [J]. International Journal of Mineral Processing, 2013, 125: 18-26.

[10]DA SILVA-RACKOV C K O, LAWAL W A, NFODZO P A, et al. Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite [J]. Applied Catalysis B: Environmental, 2016, 192: 253-259.

[11]ZHOU J X, CHENG L, MA Z J, et al. Integrated nanostructures of TiO2 /g-C3N4 /diatomite based on low-grade diatomite as efficient catalyst for photocatalytic degradation of methylene blue: performance and mechanism [J]. Catalysts, 2023, 13(5): 796.

[12]梁震,王春连,陈清礼,等 . 国内外硅藻土分布、成因、应用及其找矿远景分析[J/OL]. 中国地质,2024:1-27.(2024-01-24). https://kns. cnki. net/kcms/detail/11. 1167. P. 20240124. 1455. 004. html.

LIANG Z, WANG C L, CHEN Q L, et al. Distribution, genesis, application and prospecting prospect of diatomite at home and abroad [J/OL]. Geology in China, 2024: 1-27.(2024-01-24). https: //kns. cnki. net/kcms/detail/11. 1167. P. 20240124. 1455. 004. html.

[13]姜玉芝,贾嵩阳. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶,2011,27(5):31-37.

JIANG Y Z, JIA S Y. Exploitation application existing conditions and evolution of diatiomite [J]. Non-ferrous Mining and Metallurgy, 2011, 27(5): 31-37.

[14]刘丽艳,姜子健,刘战剑 . 二氧化锰改性硅藻土基多孔陶瓷吸附过滤性能研究[J]. 天津大学学报(自然科学与工程技术版),2025,58(4):406-413.

LIU L Y, JIANG Z J, IIU Z J. Adsorption and filtration performance of manganese dioxide modified diatomite-based porous ceramics [J]. Journal of Tianjin University (Science and Technology), 2025, 58(4): 406-413.

[15]赵宇,赵倩. 硅藻土在污废水处理中的应用研究及其发展趋势[J]. 环境与发展,2019,31(3):103-104.

ZHAO Y, ZHAO Q. Application research and development trend of diatomite in sewage wastewater treatment [J]. Environment and Development, 2019, 31(3): 103-104.

[16]DENG S, GUO Z, CHEN Y H, et al. Fabrication of Cu0-composited CuFe2O4 magnetic nanoparticles on diatomite support for efficient degradation of tetracycline hydrochloride by a Fenton-like system [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110045.

[17]ZHANG C Z, LI K L, SUN T, et al. Biomimetic sea urchin-like nano-ferrite structures for microwave absorption [J]. ACS Applied Nano Materials, 2024, 7(3): 3001-3011.

[18]ZHANG H R, WAN M T, ZHAO Y W, et al. Utilizing diatomaceous earth (DE) as a surface-treating agent of recycled aggregate (RA) for the performance modification of recycled aggregate concrete [J]. Materials and Structures, 2023, 57(1):2.

[19]李志威,代宗,王宏. 吉林白山地区低品级硅藻土利用现状及开发利用探讨[J]. 中国非金属矿工业导刊,2021(4):1-3,7.

LI Z W, DAI Z, WANG H. Utilization status and development of low-grade diatomite in Baishan area, Jilin Province [J]. China Non-Metallic Minerals Industry, 2021(4): 1-3,7.

[20]ZHANG X W, DUAN J J, TAN Y, et al. Insight into peroxymonosulfate assisted photocatalysis over Fe2O3 modified TiO2 /diatomite composite for highly efficient removal of ciprofloxacin [J]. Separation and Purification Technology, 2022, 293: 121123.

[21]YANG B B, MA Z X, WANG Q, et al. Synthesis and photoelectrocatalytic applications of TiO2 /ZnO/diatomite composites [J]. Catalysts, 2022, 12(3): 268.

[22]LIANG C, YIN S J, HUANG P, et al. The critical role of minerals in persulfate-based advanced oxidation process: catalytic properties, mechanism, and prospects [J]. Chemical Engineering Journal, 2024, 482: 148969.

[23]PHAM V V, HA P P, et al. Fe2O3 /diatomite materials as efficient photo-Fenton catalysts for ciprofloxacin removal [J]. Environmental Science and Pollution Research International, 2023, 30(12): 33686-33694.

[24]HUA C L, LIU X Y, REN S X, et al. Preparation of visible light-responsive photocatalytic paper containing BiVO4 @diatomite/MCC/PVBCFs for degradation of organic pollutants [J]. Ecotoxicology and Environmental Safety, 2020, 202: 110897.

[25]YUAN F, YANG R F, LI C Q, et al. Enhanced visible-light degradation performance toward gaseous formaldehyde using oxygen vacancy-rich TiO2-x /TiO2 supported by natural diatomite [J]. Building and Environment, 2022, 219: 109216.

[26]LIU M Y, ZHENG L, LIN G L, et al. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: natural porous diatomite as photocatalyst support and dominant facets regulator [J]. Advanced Powder Technology, 2020, 31(1): 339-350.

[27]FERNANDES Y L R L, SILVA M C L, RAIMUNDO R A, et al. Development of mesoporous ceramic membranes of diatomite/TiO2 /Nb2O5 nanocomposites for the treatment of contaminated water [J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111161.

[28]LIU L H, ZHANG Y, LV X X, et al. Efficient degradation of sulfamethoxazole by diatomite-supported hydroxyl-modified UIO-66 photocatalyst after calcination [J]. Nanomaterials, 2023, 13(24): 3116.

[29]MORADI M, SENE R A, RAHMANI F, et al. Efficient photodegradation of paraquat herbicide over TiO2 -WO3 heterojunction embedded in diatomite matrix and process optimization [J]. Environmental Science and Pollution Research International, 2023, 30(44): 99675-99693.

[30]ZHANG Y, CHEN X, CUI M S, et al. Binding Fe-doped g-C3N4 on the porous diatomite for efficient degradation of tetracycline via photo-Fenton process [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107406.

[31]WANG M F, CUI Z T, XU H L, et al. Construction of a facile separation and recycle photocatalyst: g-C3N4 /diatomite-based porous ceramic composite [J]. Ceramics International, 2023,49(8): 12990-12999.

[32]DAI N, YANG L, LIU X Y, et al. Enhanced photo-Fenton-like performance of biotemplated manganese-doped cobalt silicate catalysts [J]. Journal of Colloid and Interface Science, 2023, 652: 1812-1824.

[33]AMEREH F, JOKAR R, GHASEMI A H B, et al. Sunlight-active hierarchical Ag@insulator@ZnO core-shell array based on natural diatoms for environmental remediation [J]. Applied Materials Today, 2023, 30: 101698.

[34]LIU Q Y, YANG Y X, YUAN H M, et al. Photocatalytic degradation of methoxychlor by diatomite@Bi2WO6 under visible irradiations [J]. Journal of Molecular Structure, 2023, 1275: 134597.

[35]JIANG Z H, ZHU H T, GUO W M, et al. Ag3VO4 /g-C3N4 /diatomite ternary compound reduces Cr (VI) ion in aqueous solution effectively under visible light [J]. RSC Advances, 2022, 12(13): 7671-7679.

[36]XUE L M, LIANG E M, WANG J W. Fabrication of magnetic ZnO/ZnFe2O4 /diatomite composites: improved photocatalytic efficiency under visible light irradiation [J]. Journal of Materials Science Materials in Electronics, 2022, 33(3): 1405-1424.

[37]DAI N, YI S, ZHANG X T, et al. Typical synthesis of an iron-modified laponite @diatomite composite for photo-Fenton degradation of methyl orange dyes [J]. Applied Surface Science, 2023, 607: 154886.

[38]ZHENG X X, NIU X J, ZHANG D Q, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: a review [J]. Chemical Engineering Journal, 2022, 429: 132323.

[39]崔延瑞,薛德华,张留萍,等 . 过硫酸盐降解有机物活化技术研究进展[J]. 河南师范大学学报(自然科学版),2023,51(6):77-87.

CUI Y R, XUE D H, ZHANG L P, et al. Progress and prospect of activation technology for persulfate degradation of organic matter [J]. Journal of Henan Normal University (Natural Science Edition), 2023, 51(6): 77-87.

[40]朱睿,谭烨,李春全,等. 基于过渡金属活化的过硫酸盐高级氧化技术研究进展[J]. 化工矿物与加工,2022,51(1):49-55.

ZHU R, TAN Y, LI C Q, et al. Research progress of advanced persulfate oxidation technology based on activation by transition metals [J]. Industrial Minerals & Processing, 2022, 51(1): 49-55.

[41]侯永金,刘杰,徐啸. 过渡金属氧化物及其复合材料活化过硫酸盐的研究进展[J]. 化学与生物工程,2022,39(8):10-15,20.

HOU Y J, LIU J, XU X. Research progress in activation of persulfate by transition metal oxidesand their composites [J]. Chemistry & Bioengineering, 2022, 39(8): 10-15,20.

[42]TAN Y, LI C Q, SUN Z M, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate [J]. Chemical Engineering Journal, 2020, 388: 124386.

[43]DONG X B, REN B X, ZHANG X W, et al. Diatomite supported hierarchical 2D CoNi3O4 nanoribbons as highly efficient peroxymonosulfate catalyst for atrazine degradation [J]. Applied Catalysis B: Environmental, 2020, 272: 118971.

[44]XU P, WEI R, WANG P, et al. CuFe2O4 /diatomite actuates peroxymonosulfate activation process: mechanism for active species transformation and pesticide degradation [J]. Water Research, 2023, 235: 119843.

[45]TAN Y, ZHENG S L, DI Y H, et al. Diatomite supported nano zero valent iron with 3D network for peroxymonosulfate activation in efficient degradation of bisphenol A [J]. Journal of Materials Science & Technology, 2021, 95: 57-69.

[46]NIU L J, XIAN G, LONG Z Q, et al. MnCeOx/diatomite catalyst for persulfate activation to degrade organic pollutants [J]. Journal of Environmental Sciences, 2020, 89: 206-217.

[47]XU P, LI X, WEI R, et al. High adaptability and stability FeCo2O4 /diatomite composite for efficient peroxymonosulfate activation: performance, water matrix impact, and mechanism [J]. Chemical Engineering Journal, 2023, 462: 142204.

[48]LV C N, SHI J D, TANG Q J, et al. Tetracycline removal by activating persulfate with diatomite loading of Fe and Ce [J]. Molecules, 2020, 25(23): 5531.

[49]LI B, WANG Y F, ZHANG L, et al. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: a review [J]. Chemosphere, 2022, 291: 132954.

[50]HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes [J]. Chemical Engineering Journal, 2019, 368: 273-284.

[51]ZHANG X W, LI C Q, CHEN T, et al. Enhanced visible-light-assisted peroxymonosulfate activation over MnFe2O4 modified g-C3N4 /diatomite composite for bisphenol A degradation [J]. International Journal of Mining Science and Technology, 2021, 31(6): 1169-1179.

[52]ZHANG M M, GONG Y, MA N, et al. Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode [J]. Chemical Engineering Journal, 2020, 399: 125088.

[53]THANIGAIVEL S, VINAYAGAM S, GNANASEKARAN L, et al. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: a review [J]. Environmental Research, 2024, 240: 117460.

[54]陈锦富,严群,龚鹏程,等 . CuFe2O4 /硅藻土复合材料活化过一硫酸盐降解酸性橙[J]. 精细化工,2023,40(9):2042-2051.

CHEN J F, YAN Q, GONG P C, et al. CuFe2O4 /diatomite composite activated peroxymonosulfate for degradation of acid orange 7 [J]. Fine Chemicals, 2023, 40(9): 2042-2051.

[55]TUDI M, RUAN H D, WANG L, et al. Agriculture development, pesticide application and its impact on the environment [J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112.

[56]杨直渝,朱科,许镇浩,等. 基于过硫酸盐高级氧化技术降解抗生素的研究进展[J]. 能源环境保护,2023,37(5):1-14.

YANG Z Y, ZHU K, XU Z H, et al. Research advance on the degradation of antibiotics through advanced oxidation technology using persulfate [J]. Energy Environmental Protection, 2023, 37(5): 1-14.

[57]ZHAO Y P, SUN Q, ZHANG J, et al. Construction of Fe/N/C nano-clusters anchored on porous diatomite for efficient removal of norfloxacin via the adsorption-PMS activation [J]. Separation and Purification Technology, 2023, 310: 123127.

[58]ERLER C, NOVAK J. Bisphenol A exposure: human risk and health policy [J]. Journal of Pediatric Nursing, 2010, 25(5): 400-407.