ISSN 1008-5548

CN 37-1316/TU

最新出版

球形硅微粉的制备与表面改性技术研究进展

Research progress on preparation and surface modification techniques of spherical silica micropowder


沈王强1,2 ,任念祖1 ,叶俊良1 ,张珅铭1 ,郭敏娜1 ,魏光耀2

1. 合肥工业大学 材料科学与工程学院,安徽 合肥 230009;2. 凯盛石英材料(黄山)有限公司,安徽 黄山 245400


引用格式:

沈王强,任念祖,叶俊良,等. 球形硅微粉的制备与表面改性技术研究进展[J]. 中国粉体技术,2025,31(4):1-13.

SHEN Wangqiang, REN Nianzu, YE Junliang, et al. Research progress on preparation and surface modification techniques of spherical silica micropowder[J]. China Powder Science and Technology,2025,31(4):1−13.

DOI:10.13732/j.issn.1008-5548.2025.04.005

收稿日期:2024-12-16,修回日期:2025-03-03,上线日期:2025-05-14。

基金项目:国家自然科学基金项目,编号:22001084;安徽省自然科学基金项目,编号:2408085MB030。

作者简介:沈王强(1992—),男,副教授,博士,硕士生导师,全国博士后创新人才支持计划入选者,合肥工业大学黄山学者“学术骨干”,研究方向为新型无机非金属与粉体材料制备与表征。E-mail:shenwq@hfut. edu. cn。

通信作者:魏光耀(1982—),男,高级工程师,本科,凯盛石英(黄山)有限公司副总经理,研究方向为石英矿采选及深加工等。E-mail:wgy0206@163. com。


摘要:【目的】 开展球形硅微粉的制备与表面改性技术研究,以实现球形硅微粉的可控制备和功能化应用,更好地发挥球形硅微粉作为无机填料在覆铜板、环氧塑封料、化妆品、药物输送、催化等领域的应用潜力。【研究现状】 综述球形硅微粉的制备与表面改性技术,制备技术包含物理法和化学法,物理法包括火焰熔融法、等离子体法等,化学法包括溶胶-凝胶法、微乳液法、化学沉淀法、喷雾法和气相法等,表面改性技术主要涉及有机改性、化学腐蚀改性和聚合物接枝改性等,系统总结制备技术和表面改性技术的种类、特点及影响因素等。【结论与展望】提出现在主流的制备技术及表面改性技术在工业化应用中仍存在一定的局限性;认为未来球形硅微粉的重要研究方向将聚焦于开发绿色高效的制备技术、改进现有的改性技术、研发新型改性剂以及深入探究改性剂的改性机理。

关键词:球形硅微粉;表面改性;接枝改性

Abstract

Significance Spherical silica micropowder has garnered significant attention as an inorganic filler due to its high thermal conductivity, excellent dielectric properties, good chemical stability, etc. These superior characteristics have led to its widespread application in various fields, including copper-clad laminates, epoxy resin encapsulants, coatings, cosmetics, drug delivery, catalysis. With continuous technological advancements and increasing demands from downstream industries, the quality requirements for silica micropowder are becoming more stringent. The excellent performance of spherical silica micropowder has driven its growing market demand, making it a key focus for the future development of silica micropowder techniques.

Progress Current research on spherical silica micropowder mainly focuses on its preparation methods and surface modification techniques. Preparation approaches can be broadly classified into two categories: physical and chemical methods. Physical methods, such as flame melting and plasma processing, have been employed to produce high-purity, uniformly sized particles. For instance, a study used angular silica micropowder as a raw material to produce spherical silica micropowder through flame fusion. Chemical methods, including sol-gel, microemulsion, chemical precipitation, spray drying, and vapor phase processes, have also been widely studied. For instance, a study used tetraethyl orthosilicate as the raw material and hydrochloric acid as the catalyst to synthesize spherical silica micropowder via the sol-gel method. Researchers have further innovated by exploring new silica sources and optimizing existing preparation processes, providing references for the preparation of spherical silica micropowder. For example, researchers used rice husks as the silica source and polyethylene glycol as the solvent to synthesize spherical silica micropowder via microwave-assisted sol-gel synthesis. In terms of surface modification, techniques such as organic modification, chemical etching, and polymer grafting are widely used. Silane coupling agents are the most commonly used modifiers. Initially, single-type silane coupling agents were generally applied, but combinations of multiple agents have been shown to enhance their properties. In a study, three different silane coupling agents, KH550, KH560, and phenyltrimethoxysilane, were combined to synthesize tri-functional modified spherical silica micropowder. The results indicated that these modifying agents introduced reactive groups to the spherical silica micropowder, enhancing its interfacial compatibility and adhesion with the epoxy resin matrix. Additionally, researchers have employed chemical etching on the surface of micropowder to create more active sites, thereby enhancing the modification effect. For example, researchers treated spherical silica micropowder with a hot NaOH solution. The results showed that the NaOH treatment improved the surface activity and hydroxylation of the spherical silica micropowder, increasing the number of anchoring points and enhancing the dispersion of nanoparticles within the matrix.

Conclusions and Prospects Numerous advancements have been made in the preparation and modification of spherical silica micropowder. Techniques such as flame melting, plasma processing, sol-gel, microemulsion, and precipitation methods can all produce spherical silica micropowder with high purity and uniform particle size. However, chemical methods often face challenges related to complex processes, demanding preparation conditions, and environmental pollution, limiting their large-scale production. Physical methods, though simpler and more scalable, have more stringent requirements for temperature and equipment. Moreover, these methods demand high-quality natural quartz, which poses significant challenges due to the limited availability of ore sources, thereby hindering sustainable production. Consequently, existing preparation technologies require further refinement for industrial-scale applications. Moreover, with the growing awareness of environmental protection, the environmental impact and sustainable development strategies in the production process of spherical silica micropowder have become increasingly important. Future studies should prioritize the development of green and efficient preparation technologies. In terms of surface modification, silane coupling agents remain the most commonly used modifiers. Although the modification effects are relatively ideal, their high cost exerts considerable pressure on production cost control. To address this, future research should focus on developing new types of modifiers, optimizing modification processes, and conducting in-depth research on modification mechanisms.

Keywords:spherical silica micropowder; surface modification; 


参考文献(References)

[1]BAZZI L, HESEMANN P, LAASSIRI S, et al. Alternative approaches for the synthesis of nano silica particles and their hybrid composites: synthesis, properties, and applications [J]. International Journal of Environmental Science and Technology, 2023, 20(10): 11575-11614.

[2]BCHELLAOUI N, HAYAT Z, MAMI M, et al. Microfluidic-assisted formation of highly monodisperse and mesoporous silica soft microcapsules [J]. Scientific Reports, 2017, 7(1): 16326.

[3]AJAYI O M, AMIN S. Flow and performance effects of talc alternatives on powder cosmetic formulations[J]. International Journal of Cosmetic Science, 2021, 43(5): 588-600.

[4]GRZELAK K, TREJDA M. Spherical silica modified with magnesium and ruthenium: synthesis, characterization and catalytic properties[J]. Materials, 2021, 14(23): 7378.

[5]GUO X P, MO W J, ZHANG D Y, et al. Design of a controlled-release delivery composite of antibacterial agent gatifloxacin by spherical silica nanocarrier [J]. Frontiers in Chemistry, 2022, 9: 821040.

[6]KASEEM M, REHMAN Z U, HOSSAIN S, et al. A review on synthesis, properties, and applications of polylactic acid/silica composites [J]. Polymers, 2021, 13(18): 3036.

[7]LIANG R X, ZOU H. Removal of aqueous Hg(Ⅱ) by thiol-functionalized nonporous silica microspheres prepared by one-step sol-gel method [J]. RSC Advances, 2020, 10(31): 18534-18542.

[8]MAHMOODZADE E, MESHKANI F, REZAEI M, et al. Preparation and improvement of nickel catalyst supported ordered mesoporous spherical silica for thermocatalytic decomposition of methane[J]. Journal of the Energy Institute, 2020, 93(6): 2488-2496.

[9]OKADA T, TAGUCHI N, SHIMOMURA S. Spherical silica particles coated with lamellar nanocomposites based on a hydrophobic functionalized phyllosilicate [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132135.

[10]TAKI H, ISHIDA M, OTSUKA M. One-step preparation of sustained-release ASDs using mesoporous spherical silica [J]. Journal of Drug Delivery Science and Technology, 2020, 58: 101553.

[11]刘亚,陈光荣. 一种流动性好的高纯亚微米球形硅微粉的制备方法: CN118083984B[P]. 2024-07-23.

LIU Y, CHEN G R. A preparation method of high purity submicron spherical silica powder with good fluidity: CN118083984B [P]. 2024-07-23.

[12]邱佳浩. 一种高纯低放射性球形硅微粉制备方法: CN115090383A[P]. 2022-09-23.

QIU J H. A preparation method of high-purity and low-radioactivity spherical silica micropowder: CN115090383A[P]. 2022-09-23.

[13]谢强,管登高,杨辉勇. 火焰熔融法制备电子封装用球形硅微粉制备与表征[J]. 当代化工研究,2022,11:18-20.

XIE Q, GUAN D G, YANG H Y. Preparation and characterization of spherical silicon powder for electronic packaging by flame melting method [J]. Modern Chemical Research,2022, 11: 18-20.

[14]HOU H C, JI Z J, XIE Z, et al. Spheroidizing mechanisms and simulation of spherical silica in oxygen-acetylene flame [J]. Advanced Powder Technology, 2018, 29(3): 789-795.

[15]陈颜. 球形二氧化硅的火焰熔融法制备研究及其在复合材料中的应用探索[D]. 开封:河南大学,2024.

CHEN Y. Preparation of spherical silica by flame fusion method and its application in composite material [D]. Kaifeng: Henan University, 2024.

[16]孙增青,范晓慧,刘慧阳,等. 一种微纳米级高纯球形硅微粉制备方法: CN118929672A[P]. 2024-11-12.

SUN Z Q, FAN X H, LIU H Y, et al. A preparation method of high-purity spherical silica micronano-powder: CN118929672A [P]. 2024-11-12.

[17]张恒嘉,闫彬,嵇剑飞,等. 一种球形硅微粉的等离子体制备方法: CN116873939A[P]. 2023-10-13.

ZHANG H J, YAN B, JI J F, et al. A plasma preparation method of spherical silica powder: CN116873939A[P]. 2023-10-13.

[18]李勇,王新宇. 球形硅微粉制备方法与应用研究[J]. 中国金属通报,2019(2):205-206.

LI Y, WANG X Y. Study on preparation method and application of spherical silica micropowder[J]. China Metal Bulletin, 2019(2): 205-206.

[19]DIXIT C K, BHAKTA S, KUMAR A, et al. Fast nucleation for silica nanoparticle synthesis using a Sol-gel method [J]. Nanoscale, 2016, 8(47): 19662-19667.

[20]GU H H, ZHANG Q, GU J T, et al. Facile preparation of superhydrophobic silica nanoparticles by hydrothermal-assisted Sol-gel process and effects of hydrothermal time on surface modification[J]. Journal of Sol-Gel Science and Technology, 2018, 87(2): 478-485.

[21]SAKKA S. Birth of the Sol-gel method: early history[J]. Journal of Sol-Gel Science and Technology, 2022, 102: 478-481.

[22]LASKOWSKA M, KARCZMARSKA A, SCHABIKOWSKI M, et al. Synthetic opals or versatile nanotools: a one-step synthesis of uniform spherical silica particles[J]. International Journal of Molecular Sciences, 2023, 24(18): 13693.

[23]LIANG Q W, LIU Y X, ZHU X F, et al. Thermodynamic manipulation of the particle size in the synthesis of spherical silica from a new aspect of interface wettability [J]. Surfaces and Interfaces, 2024, 55: 105318.

[24]WANG R, YANG H, XUE K P, et al. Facile synthesis and chiral separation of chiral mesoporous silica microspheres [J]. Journal of Chromatographic Science, 2017, 55(7): 736-741.

[25]HWANG J, LEE J H, CHUN J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate [J]. Materials Letters, 2021, 283:128765.

[26]BRANDA F, GRAPPA R, COSTANTINI A, et al. Sol-gel approach for fabricating silica/epoxy nanocomposites [J]. Polymers, 2023, 15(14): 2987.

[27]NAM N N, DO H D K. Ultrasonic sonication assisted in Sol-gel Stöber and reverse microemulsion method for fabrication of silica nanoparticles and the potential application in agriculture[J]. Chemical Papers, 2024, 78(12): 7089-7096.

[28]LUO X F, DONG J, ZHANG L L, et al. Preparation of silica micro spheres via a semibatch Sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2017, 81(3): 669-677.

[29]李盛凯. 二氧化硅微球及纳米二氧化铈的制备与工艺研究[D]. 南昌:江西师范大学,2020.

LI S K. Studies on preparation and technology of silica microspheres and nano-ceria [D]. Nanchang: Jiangxi Normal University, 2020.

[30]IMOISILI P E, NWANNA E C, JEN T C. Facile preparation and characterization of silica nanoparticles from South Africa fly ash using a Sol-gel hydrothermal method [J]. Processes, 2022, 10(11): 2440.

[31]PRIYAN S R, KUMAR G S, SURENDHIRAN S, et al. Size-controlled synthesis of mesoporous silica nanoparticles using rice husk by microwave-assisted Sol-gel method [J]. International Journal of Applied Ceramic Technology, 2023, 20(5): 2807-2816.

[32]HUANG J M, FENG J, XU H R, et al. Strategy to prepare core-shell microspheres for laser direct writing on polymers:microemulsion method [J]. Industrial & Engineering Chemistry Research, 2022, 61(48): 17534-17543.

[33]刘亚. 一种球形硅微粉的制备方法: CN113321219B[P]. 2022-11-01.

LIU Y. A preparation method of spherical silica powder: CN113321219B[P]. 2022-11-01.

[34]余佳佳,朱堂龙,吴永龙,等. 低放射性非晶态球形硅微粉的制备方法: CN110950345A [P]. 2020-04-03.

YU J J, ZHU T L, WU Y L, et al. Preparation method of low-radioactivity amorphous spherical silica micropowder: CN110950345A [P]. 2020-04-03.

[35]CAI J X, HUANG B, ZHANG J H, et al. Resource utilization of chlorosilane residual liquid to prepare nano-silica in reverse microemulsion system [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 11317-11324.

[36]CAI J X, LI Y W, WEI L H, et al. Recovery of chlorosilane residual liquid to prepare nano-silica via the reverse microemulsion process [J]. Materials, 2023, 16(21): 6912.

[37]吴启玥. 球形二氧化硅的可控合成及其环氧树脂复合材料[D]. 武汉:华中科技大学,2023.

WU Q Y. Controlled synthesis of spherical silica and its epoxy composites[D]. Wuhan: Huazhong University of Science and Technology, 2023.

[38]JANG I S, PARK J Y, PARK H, et al. Simplified synthesis of spherical silica microparticles from rice husk[J]. Chemical Engineering & Technology, 2022, 45(2): 381-384.

[39]KIM S, PARK J Y, GU Y M, et al. Eco-friendly and facile synthesis of size-controlled spherical silica particles from rice husk [J]. Nanoscale Advances, 2021, 3(24): 6965-6973.

[40]CHO Y S. Fabrication of hollow or macroporous silica particles by spray drying of colloidal dispersion[J]. Journal of Dispersion Science and Technology, 2016, 37(1): 23-33.

[41]ZHU H L, LIU Y F, CHEN J, et al. A one-step ultrasonic spray pyrolysis approach to large-scale synthesis of silica microspheres [J]. Silicon, 2020, 12(7): 1667-1672.

[42]AJIZ H A, WIDIYASTUTI W, NURTONO T, et al. Preparation of amine functionalized silica by the one-step in spray drying system [J]. Journal of Physics: Conference Series, 2022, 2344: 012012.

[43]赵文超,杨润泽,肖沛文,等. 二氧化硅微球制备方法研究进展[J]. 功能材料,2024,55(5):5038-5046.

ZHAO W C, YANG R Z, XIAO P W, et al. Silica microspheres preparation methods: a review [J]. Journal of Functional Materials, 2024, 55(5): 5038-5046.

[44]钱晨光,谭琦,李春全,等. 硅微粉表面改性及其应用研究进展[J]. 中国粉体技术,2022,28(5):1-10.

QIAN C G, TAN Q, LI C Q, et al. Research progress of surface modification and application of silicon micropowders [J]. China Powder Science and Technology, 2022, 28(5): 1-10.

[45]ZHANG J L, LU P, TENG Y, et al. In-situ surface modification of precipitated silica nanoparticles with 3-methacryloxy-propyltrimethoxysilane in carbonation process [J]. Research on Chemical Intermediates, 2021, 47(7): 3037-3050.

[46]杨珂珂,李晓冬,曹家凯,等. 耐热表面改性球形硅微粉的制备及其性能[J]. 中国粉体技术,2020,26(5):60-65.

YANG K K, LI X D, CAO J K, et al. Preparation and properties of heat-resistant surface modified spherical silica powder [J]. China Powder Science and Technology, 2020, 26(5): 60-65.

[47]YUK S, LEE B C, KIM S, et al. Study on silane coupling agent treated silica nanoparticles filled high performance copper clad laminate [J]. Electronic Materials Letters, 2024, 20(2): 207-216.

[48]WANG C, LI A, KONG M Q, et al. Deep insight into interaction mechanisms between ESBR and silica modified by different silane coupling agents [J]. Journal of Applied Polymer Science, 2020, 137(37): 49112.

[49]王冬至,张开宁,姚志强,等. 一种利用双硅烷对球形硅微粉进行改性的方法: CN118745291A [P]. 2024-10-08.

WANG D Z, ZHANG K N, YAO Z Q, et al. A method of modifying spherical silicon micro powder using disilane: CN118745291A [P]. 2024-10-08.

[50]刘小康,张开宁,王冬至,等. 一种双硅烷及磁性改性硅微粉的方法: CN118754132A [P]. 2024-10-11.

LIU X K, ZHANG K N, WANG D Z, et al. A method for disilazane and magnetic modification of silica micropowder: CN118754132A [P]. 2024-10-11.

[51]WANG H M, ZHANG H, LIANG B Q, et al. Tri-functionally modified spherical silica for high-performance epoxy resin sealant [J]. Composites Communications,2024,51:102081.

[52]WANG D B, YU M D, WANG Y N, et al. Surface modification of spherical silica micro-powder using silane coupling agents and their application in epoxy resin-based composite materials[J]. Journal of Applied Polymer Science, 2024, 141(24): e55507.

[53]LIU X F, WANG C Y, LI Y B, et al. Acid pretreatment of support promotes Pd/SiO2 activity for formaldehyde oxidation at room temperature [J]. Catalysis Science & Technology, 2022, 12(21): 6540-6547.

[54]WANG J, SUN S J, DING H, et al. A semiconductor-insulator heterojunction induced by hydroxyl groups formed on the surface of SiO2 microspheres [J]. Applied Surface Science, 2020, 531: 147385.

[55]陈独旭,王冬至,葛曷一,等. 碱处理对球形硅微粉性能的影响[J]. 中国粉体技术,2023,29(3):81-91.

CHEN D X, WANG D Z, GE H Y, et al. Effect of alkali treatment on surface modification of spherical silicon powder [J]. China Powder Science and Technology, 2023, 29(3): 81-91.

[56]MARZULLO P, CAMPISCIANO V, LIOTTA L F, et al. Trialkoxysilane grafting in alcohols: a simple approach towards modified silica-based materials [J]. Molecules, 2024, 29(19): 4730.

[57]LUO T, ZENG W W, ZHANG R D, et al. Hydrophobic modification of silica surfaces via grafting alkoxy groups[J]. ACS Applied Electronic Materials, 2021, 3(4): 1691-1698.

[58]LIAO Q, TANG X, TANG J, et al. Study of styrene butadiene rubber reinforced by polybutadiene liquid rubber-modified silica [J]. Polymers, 2024, 16(20): 2866.

[59]黄冰,孙一童,李海平,等. 纳米二氧化硅微球表面接枝嵌段聚合物的制备及其在丙烯酸结构胶体系中的性能研究[J]. 中国胶粘剂,2024,33(2):57-63,70.

HUANG B, SUN Y T, LI H P, et al. Preparation of surface grafting block polymers onto nano silica microspheres and their performance study in acrylic structural adhesive [J]. China Adhesives, 2024, 33(2): 57-63,70.

[60]周蔚,徐亚新,汤浩,等. 一种覆铜板用改性球形硅微粉及其制备方法: CN118460017B [P]. 2024-11-05.

ZHOU W, XU Y X, TANG H, et al. A modified spherical silica micropowder for copper-clad laminates and its preparation method: CN118460017B [P]. 2024-11-05.