王劲松1, 但理1, 刘丽群1, 郭葵香2, 蒋明2
1.南华大学 土木工程学院,湖南 衡阳421200;2.上海城建设计研究总院集团有限公司, 上海 200125
引用格式:
王劲松,但理,刘丽群,等. 基于单纯形重心设计法的三元地质聚合物的配方优化[J]. 中国粉体技术,2025,31(5):1-13.
WANG Jinsong,DAN Li, LIU Liqun,et al. Formulation optimization for ternary geopolymers based on simplex centroid design method[J]. China Powder Science and Technology,2025, 31(5):1-13.
DOI:10.13732/j.issn.1008-5548.2025.05.013
收稿日期: 2024-10-13,修回日期: 2025-04-14,上线日期: 2025-05-06。
基金项目: 国家自然科学基金项目,编号 :42177074。
第一作者简介: 王劲松(1972—),男,教授,博士,博士生导师,湖南省“121”人才工程人选,研究方向为环境功能材料。E-mail:xhwjs@163. com。
摘要: 【目的】为了在保证力学性能的基础上降低生产成本,促进工业固体废弃物的再利用,采用最优配方的粉煤灰、煤矸石部分替代偏高岭土,以偏高岭土、粉煤灰、煤矸石作为原材料制备三元地质聚合物。【方法】评估偏高岭土、粉煤灰、煤矸石3种原材料的活性指数;应用单纯形重心设计法对3种原材料的配方进行初步优化设计,分别制备对照组、单掺组和复掺组试样;分析原材料配方对试样的力学性能、流动性能及孔隙结构的影响;通过微观形貌分析揭示三元地质聚合物生成水化产物的作用机制;确定制备三元地质聚合物的3种原材料的最优配方。【结果】在养护龄期为28 d时,偏高岭土、粉煤灰、煤矸石的活性指数分别为104.2%、85.2%、51.1%;大部分复掺组试样的抗压强度、抗折强度和流动性均优于对照组和单掺组试样的;复掺组试样的孔隙结构以小毛细孔和气泡孔为主,孔隙结构得到了改善;磷酸盐激发剂与偏高岭土、粉煤灰等发生地质聚合反应,生成了由[—Al—O—P—]n和[—Si—O—Al—O—P—]n聚合而成的无定形磷铝酸凝胶、水化硅铝酸凝胶等无定形水化产物,为地质聚合物提供了良好的力学性能;在养护龄期为28 d时,在抗压强度不小于45.0 MPa、抗折强度不小于5.8 MPa、流动度大于180 mm的前提条件下,偏高岭土的最佳质量分数为74%~83%,粉煤灰的最佳质量分数为3%~15%,煤矸石的最佳质量分数为15%~27%。【结论】采用单纯形重心设计法对三元地质聚合物砂浆的原材料进行配方优化设计,实现了三元地质聚合物的力学性能、流动性与经济效益的平衡,并有利于环境保护。
关键词: 地质聚合物; 单纯形重心设计法; 偏高岭土; 粉煤灰; 煤矸石
Abstract
Objective To prepare ternary geopolymers with excellent mechanical properties and eco-friendly characteristics, this study used metakaolin, fly ash, and coal gangue as raw materials and a phosphate solution as the activator. The simplex centroid design method (SCDM) was used to optimize the dosage ratios of metakaolin, fly ash, and coal gangue.
Methods The activity indices of three raw materials, i.e., metakaolin, fly ash, and coal gangue, were evaluated. Preliminary optimization of their dosage ratios was conducted using SCDM, and the control, single-doped, and co-doped group samples were prepared. The influence of raw material dosage ratios on the mechanical properties, flowability, and pore structure of the samples was analyzed. The mechanism of hydration product formation in ternary geopolymers was revealed through microscopic morphology analysis. The optimal dosage ratios of the three raw materials for preparing ternary geopolymers were determined.
Results and Discussion At a curing age of 28 days, the activity indices of metakaolin, fly ash, and coal gangue were measured as 104.2%, 85.2%, and 51.1%, respectively. The incorporation of coal gangue resulted in varying degrees of decreases in compressive strength and fluidity of ternary geopolymers, while its effect on flexural strength was negligible. In contrast, the addition of fly ash effectively improved the fluidity and mitigated compressive strength reduction caused by coal gangue. Most co-doped group samples exhibited superior compressive strength and fluidity compared to the control and single-doped group samples. The pore structure analysis revealed that the control group samples primarily contained air pores with a limited number of small capillary pores and gel pores, showing a relatively dense structure. The single-doped group samples exhibited a higher proportion of small capillary pores and air pores. Although the co-doped group samples were still dominated by small capillary pores and air pores, the porosity of small capillary pores was increased to varying degrees, and the number of air pores was reduced compared to single-doped group, indicating an improved pore structure. The phosphate activator was observed to react with precursor materials such as metakaolin and fly ash through geopolymerization, forming amorphous gels, including phosphoaluminate gels [—Al—O—P—]n and aluminosilicate hydrate gels [—Si—O—Al—O—P—]n. These gels greatly enhanced the mechanical properties of geopolymers. To achieve a balance between mechanical properties, fluidity, and economic efficiency, at a curing age of 28 days, the compressive and flexural strengths of ternary geopolymers were set to be no less than 60% of the control group. Under the condition of compressive strength is equal or more than 45.0 MPa, flexural strength is equal or more than 5.8 MPa, and fluidity is more than 180 mm, the optimal mass fractions of each raw material in the optimized dosage were determined as follows: metakaolin 74%~83%, fly ash 3%~15%, and coal gangue 15%~27%.
Conclusion Using SCDM, the optimal dosage of raw materials in ternary geopolymer mortar is achieved, striking a balance between mechanical properties, workability, and cost-effectiveness while contributing to environmental sustainability.
Keywords: geopolymer; simplex centroid design method; metakaolin; fly ash; coal gangue
参考文献(References)
[1]FONT A, BORRACHERO M V, SORIANO L, et al. New eco-cellular concretes: sustainable and energy-efficient materials[J]. Green Chemistry, 2018, 20(20): 4684-4694.
[2]NATH S K, MUKHERJEE S, MAITRA S, et al. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1953-1961.
[3]LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymerization kinetics: effect of clay particle size[J]. Applied Clay Science, 2016, 132: 571-578.
[4]MATHIVET V, JOUIN J, GHARZOUNI A, et al. Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments[J]. Journal of Non-crystalline Solids, 2019, 512: 90-97.
[5]LIU L P, CUI X M, HE Y, et al. Study on the dielectric properties of phosphoric acid-based geopolymers[J]. Materials Science Forum, 2010, 663/664/665: 538-541.
[6]曹德光, 苏达根, 路波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11): 1385-1389.
CAO D G, SU D G, LU B, et al. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid[J]. Journal of the Chinese Ceramic Society, 2005, 33(11): 1385-1389.
[7]吕静静. 粉煤灰基磷酸盐地质聚合物材料的制备及性能研究[D]. 天津: 天津城建大学, 2023.
LYU J J. Preparation and properties of fly ash-based phosphate geopolymer materials[D]. Tianjin: Tianjin Chengjian University, 2023.
[8]DOUIRI H, LOUATI S, BAKLOUTI S, et al. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4[J]. Materials Letters, 2014, 116: 9-12.
[9]GUO H Z, ZHANG B F, DENG L L, et al. Preparation of high-performance silico-aluminophosphate geopolymers using fly ash and metakaolin as raw materials[J]. Applied Clay Science, 2021, 204: 106019.
[10]NOBOUASSIA BEWA C, TCHAKOUTÉ H K, FOTIO D, et al. Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements[J]. Journal of Asian Ceramic Societies, 2018, 6(3): 271-283.
[11]周万良, 詹炳根, 龙靖华. 基于单纯形重心设计法的掺合料混凝土配合比设计[J]. 建筑材料学报, 2014, 17(4): 666-671.
ZHOU W L, ZHAN B G, LONG J H. Designing the mix proportion of concrete with admixture based on simplex-centroid experimental design[J]. Journal of Building Materials, 2014, 17(4): 666-671.
[12]国家标准化管理委员会. 用于水泥和混凝土中的粉煤灰:GB/T 1596—2017[S]. 北京:中国标准出版社, 2017.
State Administration for Market Supervision Administration and National Standardization Administration. Fly ash used in cement and concrete: GB/T 1596—2017[S]. Beijing: China Standard Press, 2017.
[13]国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671-2021[S]. 北京:中国标准出版社, 2021.
State Administration for Market Supervision Administration, National Standardization Administration. Test method for strength of cementitious sand(ISO method): GB/T 17671—2021[S]. Beijing: China Standard Press, 2021.
[14]国家标准化管理委员会. 水泥胶砂流动度测定方法:GB/T 2419-2009[S]. 北京:中国标准出版社, 2009.
State Administration for Market Supervision Administration and National Standardization Administration. Method for determining the flowability of cementitious sand: GB/T 2419—2009[S]. Beijing: China Standard Press, 2009.
[15]LI Y F, LIU S H, GUAN X M. Multitechnique investigation of concrete with coal gangue[J]. Construction and Building Materials, 2021, 301: 124114.
[16]POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(1): 1-6.
[17]FAURE P F, CARÉ S, MAGAT J, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Construction and Building Materials, 2012, 29: 496-503.
[18]刘洁, 张永明. 引气剂对轻质抹灰石膏砂浆性能的影响[J]. 建筑材料学报, 2024, 27(3): 259-266.
LIU J, ZHANG Y M. Effect of air entraining agent on properties of lightweight plastering gypsum mortar[J]. Journal of Building Materials, 2024, 27(3): 259-266.
[19]杨世玉, 赵人达, 靳贺松, 等. 粉煤灰地质聚合物砂浆早期强度的影响参数研究[J]. 工程科学与技术, 2020, 52(6):162-169.
YANG S Y, ZHAO R D, JIN H S, et al. Research on influence parameters of early strength of fly ash-based geopolymer mortar[J]. Advanced Engineering Sciences, 2020, 52(6): 162-169.
[20]李娜,徐中慧, 陈筱悦, 等. 偏高岭土基地聚合物高温陶瓷化特性研究[J]. 硅酸盐通报, 2019, 38(4): 957-961.
LI N, XU Z H, CHEN X Y, et al. Characteristics of metakaolinite-based geopolmers after exposure to high temperatures[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 957-961.
[21]ZRIBI M, BAKLOUTI S. Investigation of phosphate based geopolymers formation mechanism[J]. Journal of Non-crystalline Solids, 2021, 562: 120777.
[22]LECOMTE I, HENRIST C, LIÉGEOIS M, et al. Micro-structural comparison between geopolymers, alkali-activated slag cement and Portland cement[J]. Journal of the European Ceramic Society, 2006, 26(16): 3789-3797.
[23]姚正珍. 磷酸基地聚合物的制备及耐高温耐腐蚀性能研究[D]. 绵阳: 西南科技大学, 2020.
YAO Z Z. Preparation of phosphoric acid-based polymer and study on its high temperature resistance and corrosion resistance[D]. Mianyang: Southwest University of Science and Technology, 2020.
[24]JOUINI A,FÉRID M,TRABELSI-AYADI M. Equilibrium diagram of KPO3-Y(PO3)3 system, chemical preparation and characterization of KY(PO3)4[J]. Thermochimica Acta, 2003, 400(1/2): 199-204.
[25]CRIADO M, FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Alkali activation of fly ash: effect of the SiO2/Na2O ratio[J].Micro-porous and Mesoporous Materials, 2007, 106(1/2/3): 180-191.
[26]BAO Z G,YAN Y X,HAN W J. Investigation of γ-aminopropyltriethoxysilane (APTES)-modified halloysite nanotubes on the reinforcement of halloysite/polypropylene (PP) nanocomposites[J]. Polymers, 2024, 16: 3332.
[27]贺敏, 仰宗宝, 李兆超, 等. 酸激发地质聚合物反应机理与力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3579-3593.
HE M, YANG Z B, LI Z C, et al. Research progress on reaction mechanism and mechanical properties of aluminosilicate phosphate geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3579-3593.
[28]KOMLJENOVIĆ M, BAŠČAREVIĆ Z, BRADIĆ V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 35-42.