李云丽1, 吴文平2, 吴昊天1, 唐钧跃3, 邹维列2
1.武汉工程大学 土木工程与建筑学院,湖北 武汉430074;2.武汉大学 土木建筑工程学院,湖北 武汉430072;3.哈尔滨工业大学 机电工程学院 哈尔滨 150001
引用格式:
李云丽, 吴文平, 吴昊天, 等. 模拟月壤的力学性能与本构模型研究进展[J]. 中国粉体技术, 2025, 31(4): 1-18.
LI Yunli, WU Wenping, WU Haotian, et al. Research progress on mechanical properties and constitutive models of lunar soil simulants[J]. China Powder Science and Technology, 2025, 31(4): 1-18.
DOI:10.13732/j.issn.1008-5548.2025.04.007
收稿日期: 2024-12-24, 修回日期: 2025-01-20, 上线日期: 2025-04-30。
基金项目: 国家自然科学基金项目,编号:52009097;湖北省自然科学基金项目,编号:2024AFB711;武汉工程大学引进人才支持项目, 编号:K2024025。
第一作者简介: 李云丽 (1984—),女,特聘教授,博士,博士生导师,研究方向为模拟月壤力学性能及其本构行为、材料损伤与破坏的数值仿真。E-mail: liyunli@wit.edu.cn。
通信作者简介: 吴文平(1981年—),男,教授,博士,博士生导师,研究方向为金属及合金变形损伤的多尺度模拟、颗粒材料计算力学与固体本构关系。E-mail:wpu@whu.edu.cn。
摘要: 【目的】对已有模拟月壤力学性能与本构模型的试验和离散元模拟方面的研究进展进行梳理和总结,旨在为深入理解月壤的力学性能与本构特性及探月工程中所涉及的大量力学问题的分析提供参考。【研究现状】基于月壤与地球土壤的差异及其表现出的独特物理力学特性、综述模拟月壤在抗拉、抗剪、承载能力、壤-具、轮-壤相互作用和着陆冲击响应等力学性能的试验和离散元模拟研究,探讨了基于试验和离散元方法研究所构建的模拟月壤力学本构模型。【结论与展望】目前国内外研究主要偏重于模拟月壤基本物理性质和静力学性能方面,在动力学性能方面的研究偏少,不足以支撑探月工程中大量动力学问题分析;今后的研究中需大量开展模拟月壤动力学性能的研究,同时在本构模型的研究上,一方面发展基于模拟月壤变形损伤机理的细观损伤本构模型,另一方面发展基于机器学习结合模拟月壤变形损伤等物理信息的动力学本构模型,系统分析模拟月壤的动力学性能,为探月工程中相关力学问题的研究奠定理论基础。
关键词: 模拟月壤; 力学性能; 本构模型; 离散元法; 试验测试
Abstract
Significance In lunar exploration projects, understanding the interactions between lunar probes and lunar soil is essential. This necessitates a thorough investigation into the mechanical properties and constitutive relations of lunar soil. To gain a clearer understanding of these properties and the interactions between soil particles, this paper reviews and summarizes the research progress in the mechanical properties of lunar soil simulants through experimental studies and discrete element method (DEM) simulations. It aims to provide a reference for a deeper understanding of the mechanical and constitutive characteristics of lunar soil, as well as to analyze numerous mechanical problems encountered in lunar exploration.
Progress Due to the high-vacuum and low-gravity environment on the moon, lunar soil differs greatly from earth’s soil and exhibits unique physical and mechanical properties. However, given the scarcity of real lunar soil samples, lunar soil simulants with similar properties are utilized as substitutes. This paper focuses on the experimental and DEM simulation studies of various lunar soil simulants with different physical properties, examining factors such as tensile strength, shear strength, bearing capacity, soil-tool and wheel-soil interactions, and landing impact response. Furthermore, it evaluates the mechanical constitutive models for lunar soil simulants established based on these experiments and DEM simulations. Currently, there is limited research on the dynamic deformation characteristics of lunar soil simulants under vacuum and low-stress conditions, as well as on the damage caused by the failure of glassy cement in the soil. Therefore, conducting systematic and in-depth research on the dynamic deformation and damage evolution of lunar soil simulants is crucial. Understanding their dynamic deformation and damage evolution under vacuum and low-stress conditions and establishing a dynamic damage constitutive model for lunar soil under such environments are significant for accurately describing its mechanical properties.
Conclusions and Prospects The paper points out the main issues in current research on the mechanical properties of lunar soil through experiments, DEM simulations, and constitutive models.
1) Experimental studies mainly focus on the static properties of lunar soil simulants, lacking research on dynamic properties under low-gravity and vacuum environments. This is insufficient for the dynamic data required for large-scale lunar sampling and lunar base construction.
2) DEM simulations of the dynamic performance of lunar soil simulants are rare, and the models often lack the unique structure of glassy cement in real lunar soil and the particle cohesion it causes, making it difficult to accurately reflect the dynamic deformation characteristics of the glassy cement under low-gravity and vacuum environments.
3) Most constitutive models are based on existing experimental data of lunar soil simulants under conventional static stress, with almost no dynamic damage constitutive models that consider the deformation mechanisms of lunar soil under low dynamic stress and vacuum environments. Thus, it fails to accurately describe the dynamic performance of lunar soil. Therefore, future research should focus more on the dynamic performance of lunar soil simulants.
In addition, for constitutive models, efforts should be made to develop microscopic damage constitutive models based on the deformation and damage mechanisms of lunar soil simulants, as well as dynamic constitutive models that integrate machine learning with physical information such as deformation and damage. This will enable a systematic analysis of the dynamic performance of lunar soil simulants and lay a theoretical foundation for addressing related mechanical problems in lunar exploration projects.
Keywords: lunar soil simulant; mechanical properties; constitutive model; discrete element method; experimental testing
参考文献(References)
[1] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005.
OUYANG Z Y. Introduction of lunar sciences[M]. Beijing: China Astronautic Publishing House, 2005.
[2] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar sourcebook: A user's guide to the moon [M]. New York: Cambridge University Press, 1991.
[3] SUN X M, ZHANG R, LI X J, et al. JLU-H: a novel lunar highland regolith simulant for use in large-scale engineering experiments[J]. Planetary and Space Science, 2022, 221: 105562.
[4] MILLS J N, KATZAROVA M, WAGNER N J. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in situ resource utilization[J]. Advances in Space Research, 2022, 69(1): 761-777.
[5] 李云丽. 低应力下QH-E模拟月壤三轴压缩力学性能的实验与离散元模拟[D]. 武汉: 武汉大学, 2018.
LI Y L. Experimental test and discrete element modeling of triaxial compressive mechanical properties of QH-E lunar soil simulant under low stresses [D]. Wuhan: Wuhan University, 2018.
[6] ARSLAN H, STURE S, BATISTE S. Experimental simulation of tensile behavior of lunar soil simulant JSC-1[J]. Materials Science and Engineering: A, 2008, 478(1/2): 201-207.
[7] KLOSKY J L, STURE S, KO H Y, et al. Geotechnical behavior of JSC-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133-138.
[8] ALSHIBLI K A, HASAN A. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679.
[9] PERKINS S W, MADSON C R. Mechanical and load-settlement characteristics of two lunar soil simulants[J]. Journal of Aerospace Engineering, 1996, 9: 1-9.
[10] WORLEY R L, JARRAR Z A, ALSHIBLI K, et al. Suitability of split box direct tension testing for measuring tensile strength of regolith simulants[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022113.
[11] RAMÉ E, WILKINSON A, ELLIOT A, et al. Flowability of lunar soil simulant JSC-1a[J]. Granular Matter, 2010, 12(2): 173-183.
[12] CHANG C S, HICHER P Y. Model for granular materials with surface energy forces[J]. Journal of Aerospace Engineering, 2009, 22(1): 43-52.
[13] MELZER K J. Methods for investigating the strength characteristics of a lunar soil simulant[J]. Géotechnique, 1974, 24(1): 13-20.
[14] DEWOOLKAR M M, EDWARDS M, WALSH D. Shear strength and stiffness characterization of lunar simulant GRC-3[J]. Journal of Aerospace Engineering, 2018, 31(4): 04018024.
[15] DACA A, TREMBLAY D, SKONIECZNY K. Experimental evaluation of cone index gradient as a metric for the prediction of wheel performance in reduced gravity[J]. Journal of Terramechanics, 2022, 99: 1-16.
[16] BUI H H, KOBAYASHI T, FUKAGAWA R, et al. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations[J]. Journal of Terramechanics, 2009, 46(3): 115-124.
[17] MONKUL M M, DACIC A. Effect of grain size distribution on stress-strain behavior of lunar soil simulants[J]. Advances in Space Research, 60(3): 636-651.
[18] ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil simulant[J]. Advances in Space Research, 2009, 43(3): 448-454.
[19] LI R L, ZHOU G Q, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation[J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15.
[20] 邹猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究[J]. 岩土力学, 2011, 32(4): 1057-1061.
ZOU M, LI J Q, LIU G M, et al. Experimental study of terra-mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics, 2011, 32(4): 1057-1061.
[21] 蒋明镜, 李立青, 刘芳, 等. 含水率和颗粒级配对TJ-1模拟月壤力学性能影响的试验研究[J]. 岩土力学, 2011, 32(7): 1921-1925.
JIANG M J, LI L Q, LIU F, et al. Effects of moisture content and gradation on mechanical properties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2011, 32(7): 1921-1925.
[22] 蒋明镜, 戴永生, 张熇, 等. TJ-1模拟月壤承载特性的现场试验研究[J]. 岩土力学, 2013, 34(6): 1529-1535.
JIANG M J, DAI Y S, ZHANG H, et al. Field experimental research on bearing properties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2013, 34(6): 1529-1535.
[23] JIANG M J, XI B L, DE BLASIO F V, et al. Physical model tests of the bearing behavior of Tongji-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2019, 32(2): 04018150.
[24] 郭振宇, 蒋明镜, 奚邦禄. TJ-1模拟月壤开挖实验研究[J]. 防灾减灾工程学报, 2016, 36(4): 652-656.
GUO Z Y, JIANG M J, XI B L. Investigation of TJ-1 lunar soil simulant excavation tests[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(4): 652-656.
[25] 蒋明镜, 李立青, 刘芳, 等. 基坑开挖过程中 TJ-1 模拟月壤变形特性的试验研究[J]. 岩土工程学报, 2012, 34(7): 1176-1183.
JIANG M J, LI Li Q, LIU F, et al. Deformation behaviors of TJ-1 lunar soil simulant during excavation [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1176-1183.
[26] 殷参, 陈轮, 董志峰. 钻进取样试验用模拟月壤[J]. 地质与勘探, 2012, 48(1): 165-169.
YIN S, CHEN L, DONG Z F. Lunar soil simulant for drilling tool research[J]. Geology and Exploration, 2012, 48(1): 165-169.
[27] 全齐全, 史晓萌, 唐德威, 等. 模拟月壤钻进取样量影响因素分析及试验研究[J]. 北京航空航天大学学报, 2015, 41(11): 2052-2060.
QUAN Q Q, SHI X M, TANG D W, et al. Analysis and test research on influencing factors of drilling and coring quantity of lunar soil simulant[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2052-2060.
[28] TANG J Y, JIANG S Y, QUAN Q Q, et al. Soil simulant preparation for lunar deep drilling exploration: modeling and validation[J]. Planetary and Space Science, 2019, 173: 1-13.
[29] TANG J Y, QUAN Q Q, JIANG S Y, et al. Dynamic-compacting based lunar soil simulant preparation for subsurface exploration[J]. Acta Astronautica, 2020, 167: 222-231.
[30] 姜生元, 梁杰能, 赖小明, 等. 嫦娥五号月壤剖面钻进取芯状态分析与解译[J]. 机械工程学报, 2022, 58(10): 348-360.
JIANG S Y, LIANG J N, LAI X M, et al. Analysis on drilling and coring process and lunar regolith stratification state interpretation in Chang’E-5[J]. Journal of Mechanical Engineering, 2022, 58(10): 348-360.
[31] 张宇, 陈善雄, 余飞, 等. 低应力水平下CAS–1模拟月壤力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 174-181.
ZHANG Y, CHEN S X, YU F, et al. Experimental study of mechanical properties of lunar soil simulant cas-1 under low stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 174-181.
[32] 邹维列, 陈轮, 张俊峰, 等. 低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J]. 岩土工程学报, 2015, 37(8): 1418-1425.
ZOU W L, CHEN L, ZHANG J F, et al. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1418-1425.
[33] ZOU W L, LI Y L, CHEN L, et al. Mechanical properties of QH-E lunar soil simulant at low confining stresses[J]. Journal of Aerospace Engineering, 2016, 29(2): 04015036.
[34] PRABU T, MUTHUKKUMARAN K, VENUGOPAL I. Assessment of dynamic properties of a new lunar highland soil simulant (LSS-ISAC-1) developed for Chandrayaan missions[J]. Soil Dynamics and Earthquake Engineering, 2022, 155: 107178.
[35] GO G H, LEE J, CHUNG T, et al. Controlling soil disturbance of a lunar regolith simulant bed during depressurization in a vacuum chamber[J]. Scientific Reports, 2021, 11(1): 1878.
[36] 张宇, 余飞, 陈善雄, 等. CAS-1模拟月壤动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2014, 35(1): 74-82.
ZHANG Y, YU F, CHEN S X, et al. Experimental study of dynamic shear modulus and damping ratio of CAS-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2014, 35(1): 74-82.
[37] CHEN J B, NIE H, WAN J L, et al. Investigation on landing impact dynamic and low-gravity experiments for deep space lander[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(10): 1987-1997.
[38] CHE A L, ZHU R J, JIANG M J. Dynamic response of lunar soil caused by landing impact[J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4282-4292.
[39] 钟世英, 凌道盛. 着陆器足垫与月壤竖向冲击简化动力学模型[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 87-92.
ZHONG S Y, LING D S. Simplified vertical impact dynamic model of landing foot pad and lunar soil[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(4): 87-92.
[40] 李峰, 陈姝予, 张荣荣, 等. 碳纳米纤维增强模拟月壤地聚合物抗冲击性能研究[J]. 华中科技大学学报(自然科学版), 2024, 52(8): 76-83.
LI F, CHEN S Y, ZHANG R R, et al. Study on impact resistance of carbon nanofiber reinforced geopolymer based on lunar regolith simulant[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(8): 76-83.
[41] TIAN Y, ZHANG J H, ZHANG W W, et al. Drill-soil penetration model and its application to lunar exploration[J]. Advances in Space Research, 2022, 70(11): 3436-3449.
[42] CHEN T, ZHAO Z, WANG Q, et al. Modeling and experimental investigation of drilling into lunar soils[J]. Applied Mathematics and Mechanics, 2019, 40(1): 153-166.
[43] LI H, LI Y B, WEI M Y, et al. Preparation method of lunar soil simulant and experimental verification of the performance of an impact penetrator for lunar soil exploration[J]. Machines, 2022, 10(7): 593.
[44] 肖俊孝, 庞宝君, 唐钧跃, 等. 月壤水冰模拟样本SHPB试验及反射波特性分析[J]. 深空探测学报(中英文), 2022, 9(2): 150-156.
XIAO J X, PANG B J, TANG J Y, et al. SHPB test of lunar water ice simulant and analysis of reflected wave characteristics[J]. Journal of Deep Space Exploration, 2022, 9(2): 150-156.
[45] 马芹永, 鲍晓璇. 不同负温和含水率模拟月壤SHPB试验与分析[J]. 矿业科学学报, 2023, 8(1): 93-101.
MA Q Y, BAO X X. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents[J]. Journal of Mining Science and Technology, 2023, 8(1): 93-101.
[46] 马如奇, 张伟伟, 姜水清, 等. 一种新型月壤水冰采样系统设计及试验验证[J]. 宇航学报, 2023, 44(3): 389-398.
MA R Q, ZHANG W W, JIANG S Q, et al. Design and experimental verification of a novel sampling system for water ice in the lunar soil[J]. Journal of Astronautics, 2023, 44(3): 389-398.
[47] XIAO J X, JIANG S Y, TANG J Y, et al. A study of high-velocity penetration on icy lunar regolith simulants[J]. International Journal of Mechanical Sciences, 2024, 271: 109147.
[48] 马传帅, 文桂林, 周景宇, 等. 月球车沙地行驶动力学建模与仿真[J]. 机械工程学报, 2011, 47(23): 97-103.
MA C S, WEN G L, ZHOU J Y, et al. Whole-vehicle dynamical model and simulation for lunar rover traveling on the loose soil[J]. Journal of Mechanical Engineering, 2011, 47(23): 97-103.
[49] IIZUKA K, INABA K. Slip estimation using variation data of strain of the chassis of lunar rovers traveling on loose soil[J]. Remote Sensing, 2023, 15(17): 4270.
[50] CUNDALL P A. A computer model for simulating progressive, large-scale movement in blocky rock system[C]// International Society for Rock Mechanics. Proceedings of the International Symposium on Rock Mechanics. London: International Society for Rock Mechanics, 1971: 129-136.
[51] 林呈祥, 凌道盛, 钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
LIN C X, LING D S, ZHONG S Y. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(9): 1679-1691.
[52] 周诚, 李浩然, 夏一峰, 等. 离散元法在月面建造力学分析中的研究及应用[J]. 中国粉体技术, 2024, 30(4): 26-42.
ZHOU C, LI H R, XIA Y F, et al. Research and application of DEM in mechanical analysis of lunar construction[J]. China Powder Science and Technology, 2024, 30(4): 26-42.
[53] HASAN A, ALSHIBLI K A. Discrete element modeling of strength properties of Johnson space center (JSC-1A) lunar regolith simulant[J]. Journal of Aerospace Engineering, 2010, 23(3): 157-165.
[54] MATSUSHIMA T, KATAGIRI J, UESUGI K, et al. 3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1[J]. Journal of Aerospace Engineering, 2009, 22(1): 15-23.
[55] ZHAO T, DAI F, XU N W, et al. A composite particle model for non-spherical particles in DEM simulations[J]. Granular Matter, 2015, 17(6): 763-774.
[56] LEE S J, HASHASH Y M A, NEZAMI E G. Simulation of triaxial compression tests with polyhedral discrete elements[J]. Computers and Geotechnics, 2012, 43: 92-100.
[57] LUO A, CUI Y F, NIE J Y, et al. Effects of adhesion and particle shape on mechanical behaviors of lunar regolith under low stress condition-3D DEM study[J]. Computers and Geotechnics, 2024, 175: 106661.
[58] 王思远, 蒋明镜. 基于嫦娥五号月壤粒形特征的离散元模拟方法[J]. 岩土工程学报, 2024, 46(4): 833-842.
WANG S Y, JIANG M J. Lunar regolith simulations with discrete element method based on Chang’E-5 mission’s lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842.
[59] MODENESE C, UTILI S, HOULSBY G T. A study of the influence of surface energy on the mechanical properties of lunar soil using DEM[M]// WU C Y. Discrete Element Modelling of Particulate Media. Cambridge: Royal Society of Chemistry, 2012: 69-75.
[60] JIANG M J, YIN Z Y, SHEN Z F. Shear band formation in lunar regolith by discrete element analyses[J]. Granular Matter, 2016, 18(2): 32.
[61] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
[62] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
[63] JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116.
[64] JIANG M J, ZHAO T, WANG X X. DEM modelling of cone penetration tests in lunar soil[J]. Granular Matter, 2021, 24(1): 5.
[65] 邹猛, 李建桥, 贾阳, 等. 月壤静力学特性的离散元模拟[J]. 吉林大学学报(工学版), 2008, 38(2): 383-387.
ZOU M, LI J Q, JIA Y, et al. Statics characteristics of lunar soil by DEM simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(2): 383-387.
[66] 林呈祥, 凌道盛, 钟世英. 模拟月壤抗剪强度试验研究及离散元分析[J]. 岩土力学, 2017, 38(3): 893-901.
LIN C X, LING D S, ZHONG S Y. Experimental research and discrete element analysis of shear strength of lunar soil simulants[J]. Rock and Soil Mechanics, 2017, 38(3): 893-901.
[67] XI B L, JIANG M J, MO P Q, et al. Bearing capacity of lunar soil ground under extraterrestrial environmental effects[J]. Computers and Geotechnics, 2024, 165: 105923.
[68] XI B L, JIANG M J, MO P Q, et al. 3D DEM analysis of the bearing behavior of lunar soil simulant under different loading plates[J]. Granular Matter, 2023, 25(4): 72.
[69] LI Y L, ZOU W L, WU W P, et al. Triaxial compression tests of QH-E lunar soil simulant under constant mean principal stress path using discrete element method simulations[J]. Granular Matter, 2018, 20(4): 79.
[70] LI Y L, WU W P, CHU X H, et al. Effects of stress paths on triaxial compression mechanical properties of QH-E lunar soil simulant studied by DEM simulation[J]. Granular Matter, 2020, 22(2): 32.
[71] PELECH T, BARNETT N, DELLO-IACOVO M, et al. Analysis of the stability of micro-tunnels in lunar regolith with the Discrete Element Method[J]. Acta Astronautica, 2022, 196: 1-12.
[72] HUANG B, JIANG Z J, LIN P, et al. Research on impact process of lander footpad against simulant lunar soils[J]. Shock and Vibration, 2015, 2015(1): 658386.
[73] BRUCK SYAL M, SCHULTZ P H. Cometary impact effects at the moon: implications for lunar swirl formation[J]. Icarus, 2015, 257: 194-206.
[74] ALLENDE M I, MILLER J E, DAVIS B A, et al. Prediction of micrometeoroid damage to lunar construction materials using numerical modeling of hypervelocity impact events[J]. International Journal of Impact Engineering, 2020, 138: 103499.
[75] SMITH W, PENG H E. Modeling of wheel–soil interaction over rough terrain using the discrete element method[J]. Journal of Terramechanics, 2013, 50(5-6): 277-287.
[76] JIANG M J, XI B L, ARROYO M, et al. DEM simulation of soil-tool interaction under extraterrestrial environmental effects[J]. Journal of Terramechanics, 2017, 71: 1-13.
[77] JIANG M J, LIU F, SHEN Z F, et al. Distinct element simulation of lugged wheel performance under extraterrestrial environmental effects[J]. Acta Astronautica, 2014, 99: 37-51.
[78] NAKASHIMA H, FUJII H, OIDA A, et al. Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain[J]. Journal of Terramechanics, 2010, 47(5): 307-321.
[79] 李建桥, 邹猛, 贾阳, 等. 月球车轮与月壤相互作用动力学模拟[J]. 农业机械学报, 2008, 39(4): 1-4.
LI J Q, ZOU M, JIA Y, et al. Research on the interaction between lunar rover wheel and lunar soil by simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(4): 1-4.
[80] 高峰, 李雯, 孙刚, 等. 模拟月壤可行驶性的离散元数值分析[J]. 北京航空航天大学学报, 2009, 35(4): 501-504, 513.
GAO F, LI W, SUN G, et al. Numerical analysis on travelability of lunar soil simulant by means of distinct element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 501-504, 513.
[81] ZHANG K D, ZHANG Y Q, WU J L, et al. Three-dimensional MFBD-DEM coupling simulation of flexible wire mesh wheel–soil over lunar rough terrain[J]. Computational Particle Mechanics, 2024: https://doi.org/10.1007/s40571-024-00781-4.
[82] JIANG M J, DAI Y S, CUI L, et al. Experimental and DEM analyses on wheel-soil interaction[J]. Journal of Terramechanics, 2018, 76: 15-28.
[83] CUI J S, HOU X Y, WEN G L, et al. Thermal simulation of drilling into lunar rock simulant by discrete element method[J]. Acta Astronautica, 2019, 160: 378-387.
[84] XI B L, JIANG M J, CUI L. 3D DEM analysis of soil excavation test on lunar regolith simulant[J]. Granular Matter, 2020, 23(1): 1.
[85] GAO X W, TANG D W, YUE H H, et al. Influence of friction on sampling disturbance of lunar surface in direct push sampling method based on DEM[J]. Advances in Space Research, 2017, 59(12): 3036-3044.
[86] LIU T X, ZHOU J, LIANG L, et al. Investigation of effect of stones on lunar regolith drilling using DEM[J]. Computers and Geotechnics, 2021, 131: 103958.
[87] LIU T X, ZHOU J, LIANG L, et al. Effect of drill bit structure on sample collecting of lunar soil drilling[J]. Advances in Space Research, 2021, 68(1): 134-152.
[88] LIU T X, ZHOU J, LIANG L, et al. A novel torque analysis method for drilling deep lunar soil by DEM[J]. Journal of Terramechanics, 2021, 94: 23-37.
[89] 刘天喜, 魏承, 马亮, 等. 大颗粒岩块对月壤钻取过程的影响分析[J]. 岩土工程学报, 2014, 36(11): 2118-2126.
LIU T X, WEI C, MA L, et al. Effect of large granular rocks on drilling process of lunar soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2118-2126.
[90] 林云成, 李立犇, 赵振家, 等. 着陆器足垫冲击月壤动态行为离散元仿真分析[J]. 深空探测学报, 2020, 7(2): 171-177.
LIN Y C, LI L B, ZHAO Z J, et al. Simulation analysis of dynamic behavior of lander footpad impact on lunar regolith[J]. Journal of Deep Space Exploration, 2020, 7(2): 171-177.
[91] 武士轻, 王永滨, 候绪研, 等. 足垫垂直冲击月壤理论模型研究[J]. 载人航天, 2020, 26(2): 135-141.
WU S Q, WANG Y B, HOU X Y, et al. Research on theoretical model of vertical impact of foot pad on lunar soil[J]. Manned Spaceflight, 2020, 26(2): 135-141.
[92] LEI B, XU H, TANG L L, et al. Modeling and analysis for landing airbag–lunar soil interaction using a CPU–GPU-based FMBD-DEM computational framework[J]. Mechanism and Machine Theory, 2024, 198: 105668.
[93] 梁绍敏, 王永滨, 季顺迎. 基于离散元方法的月球着陆器冲击月壤过程分析[J]. 航天返回与遥感, 2017, 38(4): 55-63.
LIANG S M, WANG Y B, JI S Y. Analysis of landing impact process of lunar landing lander based on discrete element method[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(4): 55-63.
[94] 梁绍敏, 王永滨, 王立武, 等. 锥形物体对月壤冲击过程的试验及离散元分析[J]. 中国空间科学技术, 2019, 39(6): 62-71.
LIANG S M, WANG Y B, WANG L W, et al. Physical experiment and discrete analysis of impact between conical object and simulated lunar soil[J]. Chinese Space Science and Technology, 2019, 39(6): 62-71.
[95] LI Y L, YANG Z R, WU W P. DEM analysis of the dynamic characteristics of QH-E lunar soil simulant under cyclic triaxial tests[J]. Acta Astronautica, 2024, 219: 329-339.
[96] LI Y L, YANG Z R, WU W P. Analysis of impact dynamic properties of lunar water ice simulant based on FDM-DEM coupling method[J]. Advanced Powder Technology, 2024, 35(4): 104417.
[97] 马晓文, 梁庆国, 赵涛, 等. 土动力学研究综述及思考[J]. 世界地震工程, 2021, 37(4): 217-230.
MA X W, LIANG Q G, ZHAO T, et al. Review and further consideration on research of soil dynamics[J]. World Earthquake Engineering, 2021, 37(4): 217-230.
[98] HICHER P Y, CHANG C S. A constitutive model for lunar soil[C]// The American Society of Civil Engineers. Earth & Space 2008: Long Beach, California, USA, American Society of Civil Engineers, 2008: 1-8.
[99] HOU X Y, DING T X, CHEN T, et al. Constitutive properties of irregularly shaped lunar soil simulant particles[J]. Powder Technology, 2019, 346: 137-149.
[100]LIU T X, LIANG L, ZHAO Y, et al. An alterable constitutive law of high-accuracy DEM model of lunar soil[J]. Advances in Space Research, 2020, 66(6): 1286-1302.
[101]LIU T X, LIANG L, ZHAO Y, et al. Equivalent boundary model of lunar soil drilling simulation by DEM[J]. Journal of Terramechanics, 2020, 91: 85-95.
[102]梁东平, 柴洪友. 着陆冲击仿真月壤本构模型及有限元建模[J]. 航天器工程, 2012, 21(1): 18-24.
LIANG D P, CHAI H Y. Lunar soil constitutive model and finite element modeling for landing impact simulation[J]. Spacecraft Engineering, 2012, 21(1): 18-24.
[103]李琼林, 青于蓝, 崔凯, 等. 长期循环荷载下土的动力学特性与本构模型研究进展[J]. 西南交通大学学报, 2024, 59(2): 377-391.
LI Q L, QING Y L, CUI K, et al. Review of dynamic behaviors and constitutive model of soil under long-term cyclic loading[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 377-391.
[104]WANG H Y, MA Q Y, WU Q Y. Damage constitutive model of lunar soil simulant geopolymer under impact loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(3): 1059-1071.
[105]DI H G, GUO H J, ZHOU S H, et al. An analytical model for evaluating the dynamic response of a tunnel embedded in layered foundation soil with different saturations[J]. Earthquake Engineering and Engineering Vibration, 2022, 21(3): 663-681.
[106]MA D D, MA Q Y, YUAN P. SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state[J]. Cold Regions Science and Technology, 2017, 136: 37-43.
[107]LIN P Y, TANG L S, NI P P. Generalized plastic mechanics–based constitutive model for estimation of dynamic stresses in unsaturated subgrade soils[J]. International Journal of Geomechanics, 2020, 20(7): 04020084.
[108]LIU Y, DAI F. A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 289-301.
[109]DU B, BAI H B. A damage constitutive model of red sandstone under coupling of wet-dry cycles and impact load[J]. Shock and Vibration, 2019, 2019(1): 7692424.
[110]LIU H Y, LV S R, ZHANG L M, et al. A dynamic damage constitutive model for a rock mass with persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 132-139.
[111]ZHOU Y Q, SHENG Q, LI N N, et al. A dynamic constitutive model for rock materials subjected to medium- and low-strain-rate dynamic cyclic loading[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021134.
[112]TIAN H M, WANG Y. Interpretable machine learning for selection of site-specific soil constitutive models and consolidation settlement analysis[J]. Computers and Geotechnics, 2024, 171: 106396.
[113]ZHOU C J, GAO B, YAN B, et al. A combined machine learning/search algorithm-based method for the identification of constitutive parameters from laboratory tests and in situ tests[J]. Computers and Geotechnics, 2024, 170: 106268.
[114]ZHANG P, YIN Z Y, SHEIL B. Interpretable data-driven constitutive modelling of soils with sparse data[J]. Computers and Geotechnics, 2023, 160: 105511.
[115]REZAZADEH EIDGAHEE D, SHIRI H. Machine learning–enhanced modeling of stress–strain behavior of frozen sandy soil[J]. Geotechnics, 2024, 4(4): 1228-1245.
[116]WU M M, XIA Z Q, WANG J F. Constitutive modelling of idealised granular materials using machine learning method[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(4): 1038-1051.