1. 合肥工业大学 a. 材料科学与工程学院, b. 高性能铜合金材料及成形加工教育部工程研究中心,安徽 合肥 230009;
2. 中南大学 粉末冶金国家重点实验室,湖南 长沙 410083
潘亚飞,黄蕾,张久兴. 溅射用难熔金属靶材的制备及再制造工艺研究进展[J]. 中国粉体技术,2025,31(5):1-14.
PAN Yafei,HUANG Lei,ZHANG Jiuxing. Research progress on preparation and remanufacturing of refractory metal targets for sputtering[J]. China Powder Science and Technology,2025,31(5):1−14.
DOI:10.13732/j.issn.1008-5548.2025.05.004
收稿日期:2024-09-20,修回日期:2024-11-21,上线日期:2025-05-06。
基金项目:国家重点研发计划项目,编号:2018YFC1901703;中央高校基本科研业务费专项资金资助,编号:JZ2023HGQB0163、PA2022GDGP0029、PA2023GDGP0042;中南大学粉末冶金国家重点实验室资助项目,编号:Sklpm-KF-005。
第一作者简介:潘 亚 飞(1991—),男 ,副 教 授 ,博 士 ,硕 士 生 导 师 ,研 究 方 向 为 难 熔 金 属 及 硬 质 合 金 的 设 计 与 制 备 。 E-mail:pan2018@hfut. edu. cn。
通信作者简介:张久兴(1962—),男,教授,博士,博士生导师,教育部长江学者,研究方向为放电等离子烧结新技术新材料研究及产业化应用。E-mail:zjiuxing@hfut. edu. cn。
摘要:【目的】 为了探讨难熔金属靶材在半导体行业的应用现状,分析其制备工艺,并预测未来的发展趋势。【研究现状】梳理在靶材制备过程中,致密度、纯度、晶粒尺寸和结晶取向等关键因素对靶材性能的影响,总结粉末冶金技术(热压、热等静压、冷等静压、放电等离子烧结等)和熔炼技术(电子束熔炼、电弧熔炼等)在难熔金属靶材制备中的应用。阐述靶材回收技术和原位修复技术的研究进展和应用前景。【结论与展望】难熔金属靶材的未来发展正朝着以下几个关键方向迈进:追求更高的纯度和均匀性,实现更大的尺寸和更高的平整度,开发新型制备技术,以及优化回收与再利用流程,这些进步将为半导体行业带来更高的效率,提供可持续的发展路径。
关键词:溅射靶材;难熔金属;制备技术;回收及再制造
Significance The semiconductor industry, as a pillar of the national economy and a strategic cornerstone, is facing new development opportunities with breakthroughs in third-generation semiconductor technologies. In this process, chip manufacturing processes and the material supply chain have become the keys to promote industry progress. Refractory metal targets, such as tungsten (W) and molybdenum (Mo), are indispensable for the manufacturing of semiconductor integrated circuits due to their excellent physical and chemical properties. These materials, prepared as functional thin films through sputtering, are widely applied in several key areas of electronic information industries. However, a significant challenge lies in the low utilization rates of high-purity sputtering targets, typically below 30% for planar targets and under 70% for rotating targets. Consequently, recycling and reusing spent targets after sputtering not only have considerable economic benefits but also contribute significantly to environmental protection.
Progress This study reviews the current application status of refractory metal targets in the semiconductor industry, analyzes their preparation processes, and predicts future development trends. Refractory metal sputtering targets are generally produced using two major methods: melting technologies and powder metallurgy. Melting technologies such as electron beam melting and arc melting are commonly used for tantalum (Ta) and niobium (Nb) targets, while tungsten (W) and molybdenum (Mo) targets are predominantly prepared through powder metallurgy. Especially for alloys with significant differences in density and melting points, powder metallurgy ensures the uniformity of the target’s structure and composition. Methods such as hot pressing (including vacuum and inert gas), hot isostatic pressing, cold isostatic pressing, and spark plasma sintering are commonly used to achieve full densification. Moreover, this study analyzes in detail the influence of key factors such as density, purity, grain size, and crystal orientation on target properties. The use of high-purity powder raw materials is crucial, as impurities can degrade electrical and optical properties, impacting device performance. Current technologies for preparing high-purity refractory metal powders mainly include physical-chemical methods, plasma spheroidization, atomization, and plasma rotating electrode methods, with atomization emerging as the mainstream process. This study also explored the recycling and remanufacturing technologies for waste targets. High-purity target recovery primarily involves electron beam vacuum remelting or converting spent targets into high-purity powder. However, these methods could increase cost and lead to material loss. In addition, during converting, impurities may be introduced, potentially compromising the purity of remanufactured targets. Compared to the recycling process, remanufacturing process, which involves filling etched area with the same material without soldering has minimal material loss, lower costs, and better preservation of target properties. Spark plasma sintering, as an efficient sintering and bonding technique, has been successfully applied in the remanufacturing process of targets such as W, Mo, W−10%Ti, W−30%Si, and Mo−10%Nb.
Conclusions and prospects The development of refractory metal targets is expected to focus on the following key areas:1) High purity and high uniformity: As integrated circuit feature sizes shrink, the demand for higher purity and uniformity in targets increases. 2) Large size and high flatness: To meet the requirements for processing large-sized silicon wafers, improving the size and surface flatness of targets is crucial. 3) Innovation of preparation technology: Continuous improvement and innovation of preparation technologies, such as powder metallurgy, hot pressing, spark plasma sintering, and spray melting, will improve target performance and reduce manufacturing costs. 4) Recycling and remanufacturing: Adapting to increasingly strict environmental regulations and maximizing cost-effectiveness make recycling and remanufacturing key industry priorities. With growing investments from domestic enterprises and research institutes, China will make great progress in the research and preparation of high-purity refractory metal targets. With these advancements, China will reduce its dependence on imported targets, increase the market share of domestic target materials, and bolster China’s electronic materials industry to rival and surpass the levels of developed countries.
Keywords:sputtering target; refractory metal; preparation technology; recycling and remanufacturing
[1]慕慧娟,丁明磊,彭思凡. 我国溅射靶材自主可控发展的经验及启示[J]. 科技中国,2023(7):1-6.
MU H J, DING M L, PENG S F. Experience and enlightenment of autonomous and controllable development of sputtering target materials in China [J]. Technology China,2023(7):1-6.
[2]陈海峰,薛莹洁. 国内外磁控溅射靶材的研究进展[J]. 表面技术,2016,45(10):56-63.
CHEN H F, XUE Y J. Research progress on magnetically controlled sputtering targets at home and abroad [J]. Surface Technology,2016,45(10):56-63.
[3]张卫刚,李媛媛,孙旭东,等. 平板显示行业用金属溅射靶材的市场需求分析[J]. 真空科学与技术学报,2018,38(9):821-824.
ZHANG W G, LI Y Y, SUN X D, et al. Market demand analysis of metal sputtering targets for the flat panel display industry[J]. Journal of Vacuum Science and Technology,2018,38(9):821-824.
[4]张卫刚,李媛媛,孙旭东,等. 半导体芯片行业用金属溅射靶材市场分析[J]. 世界有色金属,2018(10):1-3.
ZHANG W G, LI Y Y, SUN X D, et al. Market analysis of metal sputtering targets for the semiconductor chip industry [J].World Nonferrous Metals,2018(10):1-3.
[5]贾国斌,冯寅楠,贾英. 磁控溅射用难熔金属靶材制作、应用与发展[J]. 金属功能材料,2016,23(6):48-52.
JIA G B, FENG Y N, JIA Y. Production, application and development of refractory metal targets for magnetic sputtering [J].Metal Functional Materials,2016,23(6):48-52.
[6]王晖,夏明星,李延超,等. 难熔金属溅射靶材的应用及制备技术[J]. 中国钨业,2019,34(1):64-69.
WANG H, XIA M X, Li Y C, et al. Application and preparation technology of refractory metal sputtering targets[J]. China Tungsten Industry,2019,34(1):64-69.
[7]李可为,赵百川,杜中一. 集成电路芯片制造工艺技术[M]. 北京:高等教育出版社,2011.
LI K W, ZHAO B C, DU Z Y. Integrated circuit chip manufacturing technology [M]. Beijing:Higher Education Press,2011.
[8]陈海波,周继承,李幼真. 集成电路Cu互连扩散阻挡层的研究进展[J]. 材料导报,2006,20(12):8-13.
CHEN H B, ZHOU J C, LI Y Z. Research progress on Cu interconnect diffusion barrier layer in integrated circuits[J].Materials Guide,2006,20(12):8-13.
[9]魏修宇. 半导体用高纯钨靶材的制备技术与应用[J]. 硬质合金,2017,34(5):353-359.
WEI X Y. Preparation technology and application of high purity tungsten targets for semiconductors [J]. Cemented Carbide,2017,34(5):353-359.
[10]代卫丽. 扩散阻挡层用W-10wt.%Ti靶材中富钛相的调控研究[D]. 西安:西安理工大学,2016.
DAI W L. Research on the regulation of Ti-rich phase in W-10wt. %Ti target materials for diffusion barrier layers[D]. Xi’an:Xi’an University of Technology,2016.
[11]徐镜卢,姚洪根,王绍兴. 难熔金属钨硅化物的制造[J]. 机械工程材料,1992,16(2):43-46.
XU J L, YAO H G, WANG S X. Manufacture of refractory metal tungsten silicide[J]. Materials for Mechanical Engineering,1992,16(2):43-46.
[12]LIM J W, BAE J W, ZHU Y F, et al. Improvement of Zr film purity by using a purified sputtering target and negative substrate bias voltage[J]. Surface and Coatings Technology,2006,201(3/4):1899-1901.
[13]WANG S K, YANG W H, WANG Y P, et al. Effect of target grain size on target sputter etching morphology and performance[J]. Vacuum,2022,201:111083.
[14]何金江, 贺昕,熊晓东,等 . 集成电路用高纯金属材料及高性能溅射靶材制备研究进展[J]. 新材料产业,2015(9):47-52.
HE J J, HE X, XIONG X D, et al. Research progress on high purity metal materials and high performance sputtering targets for integrated circuits [J]. New Materials Industry,2015(9):47-52.
[15]袁倩靖. 磁控溅射镀膜用纯钽靶材微观组织控制及其应用[D]. 哈尔滨:哈尔滨工业大学,2018.
YUAN Q J. Microstructure control and application of pure tantalum targets for magnetron sputtering deposition[D].Harbin:Harbin Institute of Technology,2018.
[16]杨帆,王快社,胡平,等. 高纯钼溅射靶材的研究现状及发展趋势[J]. 热加工工艺,2013,42(24):10-12.
YANG F, WANG K S, HU P, et al. Current status and development trends of high purity molybdenum sputtering targets [J].Hot Working Technology,2013,42(24):10-12.
[17]HU B, ZHOU JQ, MENG YT, et al. CALPHAD-type thermodynamic modeling of the Ti−W−B and Ti−W−Si refractory systems[J]. International Journal of Refractory Metals and Hard Materials,2019,81:206-213.
[18]宋佳. W-10%Ti合金的制备工艺研究[D]. 哈尔滨:哈尔滨工业大学,2010.
SONG J. Research on the preparation process of W-10%Ti alloy [D]. Harbin: Harbin Institute of Technology,2010.
[19]LO C F. Single phase tungsten−titanium sputter targets and method of producing same:USA08/630155[P]. 1999-04-20.
[20]LO C F, GILMAN P. Particle generation in W−Ti deposition[J]. Journal of Vacuum Science and Technology A,1999,17(2):608-610.
[21]PETROVIC S, PERUSKO D, GAKOVIC B, et al. Effects of thermal annealing on structural and electrical properties of sputtered W−Ti thin films[J]. Surface and Coatings Technology,2010,204:2099-2102.
[22]WICKERSHAM C E. Particle contamination during sputter deposition of W−Ti films[J]. Journal of Vacuum Science and Technology A,1992,10(4):1713-1717.
[23]WICKERSHAM C E, Mueller J J. Method of producing tungsten−titanium sputter targets and targets produced thereby:USA07/685789[P]. 1993-08-10.
[24]LI H G, LI Q K, GUO M M, et al. Changes in the oxygen content, morphology, and microstructure of Mo−10Nb composite powders during mechanical alloying[J]. Advanced Powder Technology,2020,31(3):1114-1124.
[25]ZHANG J, WU X C, YANG K J, et al. A novel surface design for preparing a Mo−10%Nb sputtering target with ultra-low oxygen content: coating a NbC layer on Nb powder particles via chemical vapour reaction under CH4 atmosphere[J]. Surface and Coatings Technology,2020,400:126213-126225.
[26]XIONG W, DU Y, LIU Y, et al. Thermodynamic assessment of the Mo − Nb − Ta system[J]. Calphad,2004,28(2):133-140.
[27]易晨曦. 磁控溅射靶材溅射行为及溅射清洗研究[D]. 西安:长安大学,2023.
YI C X. Study on the sputtering behavior and sputter cleaning of magnetron sputtering targets [D]. Xi’an: Chang’an University,2023.
[28]CALLISTI M, TICHELAAR F D, POLCAR T. In situ TEM observations on the structural evolution of a nanocrystalline W−Ti alloy at elevated temperatures[J]. Journal of Alloys and Compounds,2018,749:1000-1008.
[29]PETROVIC S, BUNDALESKI N, PERUSKO D, et al. Surface analysis of the nanostructured W−Ti thin film deposited on silicon[J]. Applied Surface Science,2007,253(12):5196-5202.
[30]罗俊锋. 粉末冶金靶材的制备与应用[J]. 中国金属通报,2011,31:40-41.
LUO J F. Preparation and application of powder metallurgy targets [J]. China Metal Bulletin,2011,31:40-41.
[31]刘文迪. 集成电路用钨溅射靶材制备技术的研究进展[J]. 中国钨业,2020,35(1):36-41.
LIU W D. Research progress on preparation technology of tungsten sputtering targets for integrated circuits[J]. China Tungsten Industry,2020,35(1):36-41.
[32]刘仁智. TFL-LCD纯钼靶材制备及溅射性能研究[D]. 西安:西安建筑科技大学,2014.
LIU R Z. Preparation and sputtering performance of TFL-LCD pure molybdenum targets [D]. Xi’an: Xi’an University of Architecture and Technology,2014.
[33]边逸军,吴东青,姚力军,等. 近全致密超高纯钨溅射靶材[J]. 世界有色金属,2022(4):143-145.
BIAN Y J, WU D Q, YAO L J, et al. Near full density ultra-high purity tungsten sputtering targets [J]. World Nonferrous Metals,2022(4):143-145.
[34]陈艳芳,谢敬佩,王爱琴,等. 钼及钼合金溅射靶材的研究现状与发展趋势[J]. 粉末冶金技术,2018,36(5):393-398.
CHEN Y F, XIE J P, WANG A Q, et al. Research status and development trends of molybdenum and molybdenum alloy sputtering targets [J]. Powder Metallurgy Technology,2018,36(5):393-398.
[35]周友平,姚力军,廖培君,等. 轧制钽靶材与粉末冶金钽靶材晶粒晶向对比[J]. 冶金与材料,2024,44(3):46-48.
ZHOU Y P, YAO L J, LIAO P J, et al. Comparison of grain orientation in rolled tantalum targets and powder metallurgy tantalum targets [J]. Metallurgy and Materials,2024,44(3):46-48.
[36]李帅方,方宏,孙虎民,等. 一种高致密度钼铌合金溅射靶材的制备工艺: CN201910670783. 7[P]. 2019-09-20.
LI S F, FANG H, SUN H M, et al. Preparation process of a high density molybdenum−niobium alloy sputtering target:CN201910670783. 7[P]. 2019-09-20.
[37]孙虎民,赵文普,陈亚光,等. 一种钼铌合金溅射靶材的制备工艺: CN201610306488. X[P]. 2018-06-29.
SUN H M, ZHAO W P, CHEN Y G, et al. Preparation process of a molybdenum−niobium alloy sputtering target:CN20161
0306488. X[P]. 2018-06-29.
[38]DUNLOP J A, RENSING H. Method for making tungsten−titanium sputtering targets and product: USA07/20034[P].1989-06-13.
[39]SNOWMAN A, HUNT T J. Method for making W/Ti sputtering targets and products in an inertatmosphere: USA09/047849[P]. 1999-11-30.
[40]代卫丽,梁淑华,罗亚涛,等. 原料粉末对SPS烧结W−10Ti合金组织及性能的影响[J]. 稀有金属材料与工程,2018,47(9):2888-2894.
DAI W L, LIANG S H, LUO Y T, et al. The influence of raw powder on the microstructure and properties of SPS-sintered W−10Ti alloy [J]. Rare Metal Materials and Engineering,2018,47(9):2888-2894.
[41]丁照崇,何金江,罗俊锋,等. 真空热压烧结对高纯W−Si合金靶材性能影响[J]. 稀有金属材料与工程,2014,43(6):
DING Z C, HE J J, LUO J F, et al. The effect of vacuum hot pressing sintering on the properties of high purity W−Si alloy targets [J]. Rare Metal Materials and Engineering,2014,43(6):1403-1406.
[42]姚力军,潘杰,边逸军,等. 一种钨硅靶材的制备方法: CN202111227245. 4[P]. 2022-01-28.
YAO L J, PAN J, BIAN Y J, et al. Preparation method of tungsten-silicide target material: CN202111227245. [P].2022-01-28.
[43]罗亚涛,梁淑华,代卫丽,等. SPS烧结W−10Ti合金的组织和性能[J]. 稀有金属材料与工程,2015,44(9):2310-
LUO Y T, LIANG S H, DAI W L, et al. Microstructure and properties of W−10Ti alloy by SPS sintering [J]. Rare Metal Materials and Engineering,2015,44(9):2310-2313.
[44]王庆相,接显卓,梁淑华,等. 机械合金化W−Ti粉末的烧结特性[J]. 材料热处理学报,2010,31(1):67-73.
WANG Q X, JIE X Z, LIANG S H, et al. Sintering characteristics of mechanically alloyed W−Ti powders [J]. Journal of Materials Thermal Treatment,2010,31(1):67-73.
[45]王玉金,宋佳,贾德昌,等 . 烧结温度对 W−10Ti合金显微组织和硬度的影响[J]. 材料热处理学报,2011,32(8):37-46.
WANG Y J, SONG J, JIA D C, et al. The influence of sintering temperature on the microstructure and hardness of W−10Tialloy [J]. Journal of Materials Thermal Treatment,2011,32(8):37-46.
[46]王赞海,王星明,储茂友,等. 惰性气体热压法制备W/Ti合金靶材研究[J]. 稀有金属,2006,30(5):688-691.
WANG Z H, WANG X M, CHU M Y, et al. Study on the preparation of W/Ti alloy target by inert gas hot pressing[J]. Rare Metals,2006,30(5):688-691.
[47]杨晓红,孙特,肖鹏,等. 不同粒度W粉与TiH2液相烧结制备W−10Ti合金[J]. 稀有金属材料与工程,2013,42(7):1492-1496.
YANG X H, SUN T, XIAO P, et al. Preparation of W−10Ti alloy by liquid phase sintering of different particle size W powder and TiH2[J]. Rare Metal Materials and Engineering,2013,42(7):1492-1496.
[48]姚力军,相原俊夫,大岩一彦,等. 钨硅靶材的制造方法: CN201210374813. 8[P]. 2015-07-15.
YAO L J, AIHARA T, OIWA K, et al. Manufacturing method of tungsten−silicide target material: CN201210374813.[P].2015-07-15.
[49]李立碑,孙玉福. 金属材料物理性能手册[M]. 北京:机械工业出版社,2011.LI L B, SUN Y F. Handbook of physical properties of metallic materials [M]. Beijing:China Machine Press,2011.
[50]孙虎民,赵文普,陈亚光,等. 一种钼铌合金溅射靶材的制备工艺: CN201610306488. X[P]. 2018-06-29.
SUN H M, ZHAO W P, CHEN Y G, et al. Preparation process of a molybdenum−niobium alloy sputtering target: CN2016-
10306488. X[P]. 2018-06-29.
[51]姚力军,相原俊夫,大岩一彦,等. 一种利用钛残靶制备高纯钛粉的方法: CN103418798A[P]. 2013-12-04.
YAO L J, AIHARA T, OIWA K, et al. A method for preparing high purity titanium powders from scrap titanium targets:CN103418798A[P]. 2013-12-04.
[52]吴景晖,姚力军,钟翔. 待处理靶材的处理方法: CN109022792A[P]. 2018-12-18.
WU J H, YAO L J, ZHONG X. Treatment method for targets requiring processing: CN109022792A[P]. 2018-12-18.
[53]任萍, 马海燕, 程越伟, 等. 废钽靶材回收处理工艺及其回收料应用的研究[J]. 有色金属(冶炼部分),2018(4):
REN P, MA H Y, CHENG Y W, et al. Research on the recycling process of spent tantalum targets and the application of the recycled material [J]. Nonferrous Metals (Smelting Section),2018(4):71-74.
[54]KWON O, HONG G, YANG S, et al. Method for refurbishing spent ruthenium or ruthenium alloy-based sputtering target,and refubished ruthenium or ruthenium alloy-based sputtering target with uniform grains prepared thereby: KoreaPCT/KR2014/010373[P]. 2016-05-06.
[55]MA L Z, YANG X B, KOMERTZ M J, et al. Processes for refurbishing a spent sputtering target: USA15169455[P].2021-10-19.
[56]迈克·桑德林. 废弃溅射靶的修复: CN02818144. 1[P]. 2005-04-20.SANDLIN M. Repair of waste sputtering targets: CN02818144. 1[P]. 2005-04-20.
[57]高广睿,李争显,杜继红,等. 一种贵金属靶材的修复方法: CN200810232471. X[P]. 2011-11-23.
GAO G R, LI Z X, DU J H, et al. A method for repairing precious metal targets: CN200810232471. X[P]. 2011-11-23.
[58]肖世文. 一种废旧旋转靶材回收、修复和再加工的方法: CN201610220120. 1[P]. 2019-06-14.
XIAO S W. A method for recycling, repairing, and reprocessing waste rotating targets: CN201610220120. 1[P]. 2019-06-14.
[59]李争显,高广睿,杜继红,等. 一种离子镀用贵金属靶的辉光放电修复方法: CN200810232607. 7[P]. 2011-06-29.
LI Z X, GAO G R, DU J H, et al. A glow discharge repair method for precious metal targets used in ion plating: CN 2008-10232607. 7[P]. 2011-06-29.
[60]王子文,詹智尧,廖浩嘉. 再生溅镀靶材及其制作方法: CN200910008926. 4[P]. 2010-08-18.
WANG Z W, ZHAN Z Y, LIAO H J. Method for preparing recycled sputtering target material: CN200910008926. 4[P].2010-08-18.
[61]MILLER S A. Partial spray refurbishment of sputtering targets: USA:14908396[P]. 2018-05-22.
[62]WANG T W, CHAN C Y, LIAO H C. Refurbished sputtering target and method for making the same: USA:12498148[P].2010-07-08.
[63]张久兴,刘科高,王金淑,等. 放电等离子烧结钼的组织和性能[J]. 中国有色金属学报,2001,11(5):796-800.
ZHANG J X, LIU K G, WANG J S, et al. Microstructure and properties of molybdenum sintered by spark plasma sintering[J]. The Chinese Journal of Nonferrous Metals,2001,11(5):796-800.
[64]DONG C, BI X L, YU J G, et al. Microstructural evolution and sintering kinetics during spark plasma sintering of pure tantalum powder[J]. Journal of Alloys and Compounds,2019,781:84-92.
[65]ZHANG Z H, LIU Z F, LU J F, et al. The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge[J]. Scripta Materialia,2014,81:56-59.
[66]张久兴,高思远,赵晶晶,等. 一种W靶材的修复方法: CN108817405B[P]. 2020-12-29.
ZHANG J X, GAO S Y, ZHAO J J, et al. A repair method for W target material: CN108817405B[P]. 2020-12-29.
[67]HUANG L, ZHANG J X, PAN Y F, et al. Sinter-joining of W−10Ti powder to W−10Ti waste target by spark plasma sintering[J]. Materials Today Communications,2021,27:102372.
[68]HUANG L, ZHANG J X, PAN Y F, et al. Fast in-situ repair technology-a novel SPS process for the waste refractory W−10Ti targets[J]. Vacuum,2021,192:110406.
[69]HUANG L, ZHANG J X, PAN Y F, et al. Temperature-dependent structural, thermal and mechanical properties of Mo−10Nb joints prepared by SPS[J]. Journal of Materials Science,2022,57:5315-5333.
[70]HUANG L, ZHANG J X, PAN Y F, et al. Remanufacturing of the waste refractory Mo-10Nb sputtering target by spark plasma sintering technology[J]. Vacuum,2022,200:111050.