ISSN 1008-5548

CN 37-1316/TU

最新出版

碳化处理对再生骨料性能的影响

Effect of carbonation treatment on properties of recycled concrete aggregates


房延凤, 何晨光, 赵明宇, 李博鑫

沈阳建筑大学 材料科学与工程学院,辽宁 沈阳 110168


引用格式:

房延凤, 何晨光, 赵明宇, 等. 碳化处理对再生骨料性能的影响[J]. 中国粉体技术, 2025, 31(5): 1-10.

Citation:FANG Yanfeng, HE Chenguang, ZHAO Mingyu, et al. Effect of carbonation treatment on properties of recycled concrete aggregates[J]. China Powder Science and Technology, 2025, 31(5): 1-10.

DOI: 10.13732/j.issn.1008-5548.2025.05.011

收稿日期:2025-01-17,修回日期:2025-03-16,上线日期:2025-04-30。

基金项目: 国家自然科学基金项目,编号: 52378252、 52278262; 辽宁省“兴辽英才”青年拔尖人才项目,编号:XLYC2403149。

第一作者简介: 房延凤(1988—),女,副教授,博士,硕士生导师,辽宁省“百千万人才”万人层次人才,研究方向为新型固碳胶凝材料、工业废渣综合利用、 特种胶凝材料等。E-mail:fangyf@sjzu.edu.cn。


摘要:【目的】探究再生骨料(recycled concrete aggregates, RCA)在碳化作用前后的性能变化,揭示碳化处理对RCA宏观性能和微观结构强化的影响。【方法】 将RCA进行破碎,并筛分为3种粒径(5~10、 >10~20、 >20~26 mm)的骨料颗粒,在不同时间进行预湿处理,然后置于碳化釜内进行不同时间的碳化反应,分析预湿时间、 碳化时间等对再生骨料表观密度、 吸水率、 压碎值及微观结构等的影响。【结果】 经1 h预湿处理后的RCA碳化效果最佳,粒径为5~10 mm的RCA具有更好的碳化效果; 在CO2体积分数为20%和压强为0.4 MPa条件下,粒径为5~10 mm的RCA,碳化6 h后表观密度提升3.34%,吸水率降低28.42%,压碎值降低13.36%; 小粒径骨料(5~10 mm)的CaCO3质量损失率达18.16%,对应固碳率(质量分数,下同)为41.27%,较未碳化组(12.57%)的提升44.45%; 大粒径骨料(>20~26 mm)的固碳率仅为32.02%,较5~10 mm组的降低22.41%。【结论】 碳化处理后的再生骨料表面形成致密的碳酸钙晶体填充骨料的孔隙,提升表观密度,降低吸水率和压碎值; 预湿程度、 碳化时间和粒径会影响碳化效果,缩短预湿时间,延长碳化时间,小粒径骨料性能表现达到最优。

关键词:碳化; 再生骨料; 吸水率; 压碎值; 碳酸钙

Abstract

Objective This study investigates the property changes in recycled concrete aggregates (RCA) before and after carbonation treatment, focusing on the reinforcement mechanisms that carbonation exerts on both macro-properties and microstructural characteristics through multi-scale analysis. The correlation between carbonation processes and property enhancement in RCAs was established for the first time, aiming to enhance the resource utilization efficiency of construction waste while contributing to carbon sequestration and emission reduction. The findings provide valuable theoretical support for advancing low-carbon recycling technologies in the construction sector, aligning with the "carbon peak and carbon neutrality" goals.

Methods In this study, RCA were crushed and sieved into three categories of particle size (5~10 mm, 10~20 mm,and 20~26 mm). The aggregates underwent pre-wetting treatments of 0, 1, 12, and 24 hours before being subjected to carbonation under controlled conditions (20% CO2 concentration and 0.4 MPa pressure) for 6 hours. The effect of prewetting duration on carbonation efficiency was analyzed, and further investigations were conducted based on the identified optimal pre-wetting duration (1 hour) to examine the variations in mass growth rate for the three particle sizes after carbonation durations of 6, 12, and 24 hours. A comparative analysis was performed to evaluate the effects of different carbonation durations on key physical properties, including apparent density, water absorption, crushing value, and microstructural characteristics of the aggregates.

Results and Discussion The carbonation treatment showed optimal properties after a 1-hour pre-wetting, with the 5~10 mm fraction demonstrating enhanced reinforcement due to its higher specific surface area. Under the controlled carbonation conditions (20% CO2 concentration and 0.4 MPa pressure), the 5~10 mm aggregates exhibited a 3.34% increase in apparent density (2.430~2.512 g·cm-3), a 28.42% reduction in water absorption (4.12%~2.95%), and a 13.36% decrease in crushing value (18.7%~16.2%) after 6 hours of carbonation. The CaCO3mass loss was 18.16%, which was attributed to the crystalline phase transformation detected through XRD analysis and corresponded to a carbon sequestration efficiency of 41.27%, approximately 2.29 times higher than the non-carbonated control group (12.57%). In contrast, the large aggregates (20~26 mm) displayed a carbon sequestration efficiency of only 32.02%, which was 22.41% lower than the smaller aggregates. This size-dependent difference originated from variations in CO2 diffusion kinetics, where the smaller aggregates, with their shorter gas transport paths, allowed for more complete carbonation reactions.

Conclusion Carbonation treatment results in the formation of dense calcium carbonate crystals on the surface of RCA,filling the pores within the aggregates, thereby increasing apparent density and reducing both water absorption rate and crushing value. Factors such as pre-wetting duration, carbonation time, and particle size significantly affect the carbonation efficiency. A shorter pre-wetting duration and longer carbonation time lead to optimal properties in smaller particle size aggregates.

Keywords:carbonation; recycled concrete aggregate; water absorption rate; crushing value; calcium carbonate


参考文献(References)

[1]陆宁, 张琼丽, 张焕芳, 等. 建筑垃圾资源化的经济效益研究[J]. 价值工程, 2013, 32(18):90-92.

LU N, ZHANG Q L, ZHANG H F, et al. Research on the economic benefits of construction waste recycling[J].Value Engineering, 2013, 32(18): 90-92.

[2]戴显明. 积极促进绿色建筑发展努力践行砼业低碳理念:中国建筑业协会混凝土分会五届二次理事会工作报告[J].混凝土, 2012(1): 1-3.

DAI X M. Actively promote the development of green buildings and strive to practice the low-carbon concept in the concrete industry:work report of the second council of the Fifth Council of the Concrete Branch of the China Construction Industry Association[J]. Concrete, 2012(1): 1-3.

[3]张国鑫. 城市建筑垃圾处理与资源化利用研究[J]. 新城建科技, 2025, 34(1): 46-48.

ZHANG G X. Research on urban construction waste treatment and resource utilization[J]. Newtype Urban Construction Technology, 2025, 34(1): 46-48.

[4]高越青, 潘碧豪, 梁超锋. CO2强化再生骨料的特性及其对再生混凝土性能的影响[J]. 土木与环境工程学报, 2021,43(6): 95-102.

GAO Y Q, PAN B H, LIANG C F. Properties of CO2 modified recycled aggregates and its effect on the performance of recycled aggregate concrete[J]. Journal of Civil and Environmental Engineering, 2021, 43(6): 95-102.

[5]鲍玖文, 李树国, 张鹏, 等. 再生骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37(10):2602-2609.

BAO J W, LI S G, ZHANG P, et al. The influence of silane impregnation treatment of recycled aggregate on the mass transfer performance of concrete medium[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2602-2609.

[6]TAM V W Y, SOOMRO M, EVANGELISTA A C J. A review of recycled aggregate in concrete applications (2000-2017) [J]. Construction and Building Materials, 2018,172: 272-292.

[7]周志尧, 程银银, 张喆, 等. 固废材料复合固化盐渍土的力学性能[J]. 中国粉体技术, 2025, 31(1): 130-142.

ZHOU Z Y, CHENG Y Y, ZHANG Z, et al.Mechanical properties of composite salt-stabilized soil with solid waste materials[J]. China Powder Science and tTechnology, 2023, 31(1): 130-142.

[8]史桂洁. 建筑垃圾填筑路基的工艺研究[J]. 城市建筑, 2024, 21(14): 193-195.

SHI G J. Research on the process of filling subgrade with construction waste[J]. Urban Architecture, 2024, 21(14):193-195.

[9]商效瑀, 杨经纬, 李江山. 基于CT图像的再生混凝土细观破坏裂纹分形特征[J]. 复合材料学报,2019, 37(7): 1774-1784.

SHANG X Y, YANG J W, LI J S. Fractal characteristics of mesoscopic failure cracks in recycled concrete based on CT images[J]. Acta Materiae Compositae Sinica, 2019, 37(7): 1774-1784.

[10]POON C S, KOU S C, LAM L. Use of recycled aggregates in molded concrete bricks and blocks[J]. Construction and Building Materials, 2022, 16(5): 281-289.

[11]AL-BAYATI H K A, DAS P K, TIGHE S L, et al. Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate[J]. Construction and Building Materials, 2016, 112: 284-298.

[12]PURUSHOTHAMAN R,AMIRTHAVALLI R R ,KARAN L . Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete[J]. Journal of Materials in Civil Engineering,2015, 27(5): 401-416.

[13]DJERBI A. Effect of recycled coarse aggregate on the new interfacial transition zone concrete[J]. Construction and Building Materials, 2018, 190: 1023-1033.

[14]LI Y, ZHANG S, WANG R J,et al. Effects of carbonation treatment on the crushing characteristics of recycled coarse aggregates[J]. Construction and Building Materials, 2019, 201: 408-420.

[15]丁亚红, 宁威, 武军, 等. 粒径对加速碳化再生细骨料性能的影响[J]. 河南理工大学学报(自然科学版), 2023, 42(5): 191-196.

DING Y H, NING W, WU J, et al. The influence of particle size on the performance of accelerated carbonation recycled fine aggregates[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(5):191-196.

[16]信翔宇, 陈广立, 张秀芝, 等. 固废再生利用研究进展[J]. 中国粉体技术, 2023, 29(1):10-18.

XIN X Y, CHEN G L, ZHANG X Z, et al. Research progress on the recycling and utilization of solid waste[J]. China powder science and technology, 2023, 29(1): 10-18.

[17]IIZUKA A, NAKAGAWA M, KUMAGAI K, et al. Chemical extraction and mechanical crushing method for fine aggregate recycling from waste concrete[J]. Journal of Chemical Engineering of Japan, 2010, 43(10): 906-912.

[18]OGAWA H, NAWA T. Improving the quality of recycled fine aggregate by selective removal of brittle defects[J]. Journal of Advanced Concrete Technology, 2012, 10(12): 395-410.

[19]SARAVANAKUMAR P, ABHIRAM K, MANOJ B. Properties of treated recycled aggregates and its influence on concrete strength characteristics[J]. Construction and Building Materials, 2016, 111: 611-617.

[20]SHANG M J. High strength concrete containing natural pozzolan and silica fume[J]. Cement and Concrete Composites,2020, 22(6): 152-159.

[21]MUKHARJEE B B, BARAI S V. Influence of nano-silica on the properties of recycled aggregate concrete[J]. Construction and Building Materials, 2014, 55: 29-37.

[22]JISHEN Q, DAVID Q S T, EN-HUA Y. Surface treatment of recycled concrete aggregates through microbial carbonate precipitation[J]. Construction and Building Materials, 2014,57: 144-150.

[23]王佃超, 肖建庄, 夏冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11):1610-1619.

WANG D C, XIAO J Z, XIA B, et al. Carbonation modification of recycled aggregate and its contribution to carbon reduction[J]. Journal of Tongji University (Natural Science), 2022, 50(11): 1610-1619.

[24]张名杰, 赵俊奎, 丁铸. 再生骨料混凝土性能的研究[J]. 中国粉体技术, 2015, 21(4): 85-88.

ZHANG M J, ZHAO J K, DING Z. Research on the performance of recycled aggregate concrete[J]. China Powder Science and Technology, 2015, 21(4): 85-88.