ISSN 1008-5548

CN 37-1316/TU

最新出版

空心玻璃微珠固体浮力材料研究进展

Research progress on hollow glass microspheres-based solid buoyancy materials


张建峰1,张 政1,柳 雷2,李满江1,汪 俊2,刘亚辉2,李改叶1,许传华2

1. 河海大学 材料科学与工程学院,江苏 南京 210000;2. 中钢集团马鞍山矿院新材料科技有限公司,安徽 马鞍山 243000


引用格式:

张建峰,张政,柳雷,等. 空心玻璃微珠固体浮力材料研究进展[J]. 中国粉体技术,2025,31(3):32-42.

ZHANG Jianfeng, ZHANG Zheng, LIU Lei, et al. Research progress on hollow glass microspheres-based solid buoyancy materials[J]. China Powder Science and Technology,2025,31(3):32-42.

DOI:10.13732/j.issn.1008-5548.2025.03.003

收稿日期:2024-08-17,修回日期:2025-03-27,上线日期:2025-04-10。

基金项目:国家自然科学基金项目,编号:52478395;安徽省科技重大专项,编号:2021e03020005。

第一作者简介:张建峰(1978—),男,教授,博士,博士生导师,江苏省特聘教授,江苏省六大人才高峰计划入选者,研究方向为空心玻璃微珠强化应用开发。E-mail: jfzhang@hhu. edu. cn。


摘要:【目的】为了开发高性能空心玻璃微珠填充型固体浮力材料,同时推动深海海洋资源开发与科考活动,探讨空心玻璃微珠填充型固体浮力材料的相关研究。【研究现状】 从深海环境对固体浮力材料密度、强度、吸水性等多重严苛指标要求角度考虑,介绍固体浮力材料基体选择与改性、空心玻璃微珠填料的改性与复合方法;对比分析空心玻璃微珠固体浮力材料的成型制备工艺及改性方向;概括国内外空心玻璃微珠固体浮力材料的应用情况。【结论与展望】研究提出在空心玻璃微珠固体浮力材料制备过程中,应充分考虑树脂、填料及成型方法对材料性能的影响,认为真空浸渍法更有利于微珠在树脂基体均匀分布和提高浮力材料的强度,未来可结合人工智能开发智能浮力材料,拓宽其在深海、极地等极端环境的应用前景。

关键词:固体浮力材料;空心玻璃微珠;成型工艺;研究进展

Abstract

Significance Hollow glass microspheres (HGMs)-filled solid buoyancy materials have attracted widespread scientific and technological attention due to their key role in deep-sea exploration and marine resource exploitation. These materials exhibit the advantages of low density, high strength, and exceptional water resistance, making them highly suitable for marine equipment,underwater operations, and deep-sea submersibles. Over the past few decades, advancements in HGMs have made them an ideal material for lightweight and high-strength composites. However, conventional HGMs-filled composites still face challenges, including limited compressive strength and insufficient long-term durability in extreme deep-sea environments. This paper provides a systematic review and analysis of the current research on HGMs-filled solid buoyancy materials, aiming to guide the future development of high-performance composites and further advance deep-sea marine resource exploitation and scientific activities.

Progress To improve the performance of solid buoyancy materials, researchers have explored various approaches focusing on matrix, filler, and composite methods. Studies have explored matrices such as geopolymer, modified epoxy resin, and phenolic resin to achieve solid buoyancy materials with low water absorption and high-temperature resistance. Other efforts have focused on HGM modification through high-temperature treatment and surface grafting, effectively enhancing interfacial bonding with epoxy resin and improving material properties. Currently, the primary molding methods for HGMs-filled solid buoyancy materials include stir casting, vacuum impregnation, and molding. Stir casting method, though has a simple preparation process,exhibits limitations such as uneven HGM distribution, breakage, and matrix porosity. To address these issues, a heap-firing method has been developed to prepare HGMs-based porous ceramics, which were then used as preforms. High-performance buoyancy materials were produced by combining these preforms with epoxy resin through vacuum impregnation.

Conclusions and Prospects In the preparation process of HGMs-filled solid buoyancy materials, key factors such as resin selection, filler type and distribution, additives, structural design, and molding methods should be considered. Future research could leverage neural network algorithms for constitutive relationship analysis and mechanical behaviour simulations to further optimize formulations for deep-sea applications, ultimately yielding higher-performance materials. For HGM preparation and surface modification, future research should focus on the development of novel hollow glass sphere materials with controllable wall thickness, uniform size, and enhanced compatibility with polymer matrices. Vacuum impregnation method is particularly promising, as it promotes uniform sphere distribution and reduces bonding defects between resin and hollow spheres, thus significantly improving compressive strength. Moreover, optimizing the particle size grading system for HGMs could achieve high-density sphere filling in the matrices, thereby yielding solid buoyancy materials with excellent overall performance.

Keywords:solid buoyancy material; hollow glass microsphere; forming process; research progress


参考文献(References)

[1]孙崇波,阴晴,金伟晨 .“十四五”时期中国造船业高质量发展重点方向研究[J]. 中国海洋经济,2022,7(1):16-29.

SUN C B, YIN Q, JIN W C. Research on the key direction of high-quality development of China’s shipbuilding industry during the 14th Five-Year Plan period[J]. Marine Economy in China,2022,7(1):16-29.

[2]YANG R, MA Y J,CHENG S J. Perspective on key materials for marine observation and exploration platform[J]. Bulletin of the Chinese Academy of Sciences,2022,37(7):881-887.

[3]HU Z, CAO J. Development and application of manned deep diving technology[J]. Chinese Journal of Engineering Science,2019,21(6):87.

[4]ZHAI G J, DING Y, WANG Y, et al. Experimental investigation of the hydrostatic compression of a hollow glass microspher es/epoxy resin under high-pressure conditions at the full ocean depth[J]. Polymer Composites,2020,41(12):5331-5342.

[5]REN S E, HU X X, REN H T, et al. Development of a buoyancy material of hollow glass microspheres/SiO2 for high-temperature application[J]. Journal of Alloys and Compounds,2017,721:213-219.

[6]高博,王芳,姜哲,等. 固体浮力材料应力-吸水率耦合[J]. 硅酸盐学报,2023,51(11):2824-2833.

GAO B, WANG F, JIANG Z, et al. Hygro-mechanical coupling of solid buoyancy materials[J]. Journal of the Chinese Ceramic Society,2023,51(11):2824-2833.

[7]马玉民,蔡耀武,张勇,等. 空心玻璃微珠的研究进展和应用现状[J]. 有机硅材料,2023,37(4):75-80.

MA Y M,CAI Y W,ZHANG Y,et al. Research progress and application of hollow glass microspheres[J]. Silicone Material,2023,37(4):75-80.

[8]汪文杰,贾东宁,黄贤青,等. 深潜装备材料发展关键技术研究[J]. 舰船科学技术,2024,46(3):1-7.

WANG W J, JIA D N, HUANG X Q, et al. Research on key technologies of deep diving submersible material development[J]. Ship Science and Technology,2024,46(3):1-7.

[9]ZHANG H L, MA G L, ZHU Z W. Serviceability properties of solid buoyancy materials for deep-sea HOV[J]. Advances in Materials Science and Engineering,2022,2022(1):6806153.

[10]单丹,范道荣,董正洪,等. 填料种类对固体浮力材料性能的影响[J]. 冶金与材料,2020,12(6):133-134,140.

SHAN D, FAN D R, DONG Z H, et al. Influence of filler types on properties of solid buoyancy materials[J]. Metallurgy and Materials,2020,12(6):133-134,140.

[11]李涛,黄纬,吴平伟,等. 固体浮力材料的制备工艺及性能[J]. 中国塑料,2023,37(5):15-21.

LI T, HUANG W, WU P W, et al. Preparations and performance of solid buoyancy materials[J]. China Plastics,2023,37(5):15-21.

[12]周云,王东胜,王莉萍,等. 三相固体浮力材料的制备与应用研究[J]. 功能材料,2017,48(10):10165-10168.

ZHOU Y, WANG D S, WANG L P, et al. Study on fabrication and application of three phase solid buoyancy material[J]. Journal of Functional Materials,2017,48(10):10165-10168.

[13]AFOLABI L O, ARIFF Z M, HASHIM S F S, et al. Syntactic foams formulations, production techniques, and industry applications: a review[J]. Journal of Materials Research and Technology,2020,9(5):10698-10718.

[14]张筱逸. 环氧树脂的特性及其作为功能性建筑材料的应用研究[J]. 应用化工,2022,51(3):884-886,890.

ZHANG X Y. Study on the characteristics of epoxy resin and its application as a functional building material[J]. Applied Chemical Industry,2022,51(3):884-886,890.

[15]潘鹏举. 深海用聚合物基浮力材料制备及性能表征[D]. 杭州:浙江大学,2005.

PAN P J. Preparation and characterization of polymer-based buoyancy materials for deep-sea use[D]. Hangzhou: Zhejiang University,2005.

[16]吴则华,陈先,梁忠旭,等. 室温固化型高强度固体浮力材料[J]. 高科技与产业化,2008,14(12):48-50.

WU Z H,CHEN X,LIANG Z X,et al. Room temperature curing high strength solid buoyancy material[J]. High-technology & Industrialization,2008,14(12):48-50.

[17]WANG J Z, GAO B, CUI W C. A method for improving the hydrostatic pressure testing of the compressive strength of solid buoyancy materials used at full ocean depth[J]. Ocean Engineering,2023,286:115673.

[18]ZHAI G J, DING Y, MA Z, et al. Novel triaxial experimental investigation on compressive behavior of hollow glass microspheres composites under varied temperature environments[J]. Polymer Testing,2022,115:107745.

[19]张帆,单丹,胡芝娟,等. 无机非金属固体浮力材料的研制[J]. 硅酸盐通报,2015,34(8):2398-2403.

ZHANG F, SHAN D, HU Z J, et al. Preparation of inorganic non-metallic solid buoyancy materials[J]. Bulletin of the Chinese Ceramic Society,2015,34(8):2398-2403.

[20]汪杰,冯绍华,陈先. 4 500 m阻燃固体浮力材料的研究与制备[J]. 塑料工业,2015,43(3):132-135.

WANG J, FENG S H, CHEN X. Study and preparation of flame retardant solid buoyancy materials of 4 500 meters[J].China Plastics Industry,2015,43(3):132-135.

[21]熊利,许晓武,金星. 深海固体浮力材料的研制及性能探讨[J]. 矿冶工程,2018,38(5):33-35.

XIONG L, XU X W, JIN X. A discussion on preparation and properties of solid buoyancy materials used in deep sea[J]. Mining and Metallurgical Engineering,2018,38(5):33-35.

[22]李仙会,张兆峰,柯贤朝,等. 深水固体浮力材料的性能[J]. 工程塑料应用,2019,47(4):19-23.

LI X H, ZHANG Z F, KE X C, et al. Properties of deep-water solid buoyancy material[J]. Engineering Plastics Application,2019,47(4):19-23.

[23]曹成昊,郭安然,刘家臣,等. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报,2021,35(2):2185-2190,2212.

CAO C H, GUO A R, LIU J C, et al. Preparation and properties of composite resin/hollow microspheres high temperature buoyancy materials[J]. Materials Reports,2021,35(2):2185-2190,2212.

[24]YUAN J, AN Z G, ZHANG J J. Effects of hollow microsphere surface property on the mechanical performance of high strength syntactic foams[J]. Composites Science and Technology,2020,199:108309.

[25]张帆,范道荣,单丹,等. 轻质填料种类对固体浮力材料性能的影响[J]. 辽宁化工,2021,50(3):277-281.

ZHANG F, FAN D R, SHAN D, et al. Effect of lightweight filler types on performance of solid buoyancy materials[J]. Liaoning Chemical Industry,2021,50(3):277-281.

[26]MANO J, AFZAL KHAN D M, MONDAL D P. High temperature deformation behavior of closed cell ZnAl27 hybrid foam made through stir casting technique[J]. Materials Science and Engineering: A,2018,731:324-330.[LinkOut]

[27]王鹏. 空心玻璃微珠表面改性对固体浮力材料性能影响研究[D]. 哈尔滨:哈尔滨工程大学,2016.

WANG P. Study on the effect of surface modification of hollow glass beads on the properties of solid buoyancy materials[D]. Harbin: Harbin Engineering University,2016.

[28]刘艳,刘文智,马春霞. 深水固体浮力材料的制备及性能研究[J]. 舰船科学技术,2017,39(5):87-90.

LIU Y, LIU W Z, MA C X. Research on preparation and properties of deep-water solid buoyancy material[J]. Ship Scienceand Technology,2017,39(5):87-90.

[29]赵忠贤,丁晓波,高缘,等. 三相轻质复合泡沫浮力材料的制备及性能研究[J]. 塑料科技,2019,47(3):53-58.

ZHAO Z X, DING X B, GAO Y, et al. Preparation and characterization of three-phase lightweight composite foam buoyancy materials[J]. Plastics Science and Technology,2019,47(3):53-58.

[30]QIAO Y J, LI Q W, LI Q, et al. Lightweight epoxy foams prepared with arranged hollow-glass-microspheres/epoxy hollow spheres[J]. Composites Communications,2022,33:101197.

[31]JIANG T, WU X F, GAO Y, et al. Fabrication and mechanical performance of glass fiber reinforced, three-phase, epoxy syntactic foam[J]. Chemistry Select,2022,7(1):e202103556.

[32]WU X F, GAO Y, WANG Y, et al. Recent developments on epoxy-based syntactic foams for deep sea exploration[J].Journal of Materials Science,2021,56(3):2037-2076.

[33]AFOLABI O A, MOHAN T P, KANNY K. Processing of low-density HGM-filled epoxy-syntactic foam composites with high specific properties for marine applications[J]. Materials,2023,16(4):1732.

[34]HOU J Y, SHI Y T, LI Z H, et al. Numerical simulation and experimental study on flexible buoyancy material of hollow glass microsphere and silicone rubber for small deep-sea soft robots[J]. Applied Materials Today,2020,21:100875.

[35]王跃平,杨东杰,马志超,等. 全海深浮力材料的研究与制备[J]. 材料开发与应用,2021,36(4):57-61.

WANG Y P, YANG D J, MA Z C, et al. Study on and preparation of full ocean depth buoyancy materials[J]. Development and Application of Materials,2021,36(4):57-61.

[36]刘志,翟晓康,梁小杰,等 . 超低密度全海深固体浮力材料的制备及性能研究[J]. 化工新型材料,2023,51(2):105-107.

LIU Z, ZHAI X K, LIANG X J, et al. Preparation and properties of ultralow density full ocean depth solid buoyancy material[J]. New Chemical Materials,2023,51(2):105-107.

[37]王瑛,段景宽,杨小瑞,等 . 环氧树脂/空心玻璃微珠复合浮力材料制备及性能[J]. 工程塑料应用,2020,48(9):44-48,55.

WANG Y, DUAN J K, YANG X R, et al. Preparation and properties of epoxy resin/hollow glass microsphere composite buoyancy materials[J]. Engineering Plastics Application,2020,48(9):44-48,55.

[38]AFOLABI L O, MUTALIB N A A, ARIFF Z M. Fabrication and characterization of two-phase syntactic foam using vacuum assisted mould filling technique[J]. Journal of Materials Research and Technology,2019,8(5):3843-3851.

[39]DING J J, YE F, LIU Q, et al. Co-continuous hollow glass microspheres/epoxy resin syntactic foam prepared by vacuum resin transfer molding[J]. Journal of Reinforced Plastics and Composites,2019,38(19/20):896-909.

[40]郑茹静. 环氧树脂基轻质浮力材料的制备与性能研究[D]. 兰州:兰州大学,2019.

ZHENG R J. Preparation and properties of epoxy resin-based lightweight buoyancy materials[D]. Lanzhou: Lanzhou University,2019.

[41]吴少惠,马荣锋,吴平伟,等 . 空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能[J]. 复合材料学报,2020,37(10):2401-2408.

WU S H, MA R F, WU P W, et al. Compression molding process and performance of hollow glass microsphere/epoxy resin solid buoyancy materials[J]. Acta Materiae Compositae Sinica,2020,37(10):2401-2408.

[42]邢贺,李涛,吴平伟,等. 固体浮力材料的等静压成型工艺及性能[J]. 现代塑料加工应用,2023,35(4):1-4.

XING H, LI T, WU P W, et al. Isostatic pressing forming process and properties of solid buoyancy materials[J]. Modern Plastics Processing and Applications,2023,35(4):1-4.

[43]衣亚东,吴平伟,吴少惠,等. 深海固体浮力材料挤出成型工艺及性能[J]. 现代塑料加工应用,2021,33(4):5-9.

YI Y D, WU P W, WU S H, et al. Extrusion technology and performance of deep-sea solid buoyancy materials[J]. Modern Plastics Processing and Applications,2021,33(4):5-9.

[44]CUNHA M P, GRISA A M C, KLEIN J, et al. Preparation and characterization of hollow glass microspheres-reinforced poly (acrylonitrile-co-butadiene-co-styrene) composites[J]. Materials Research,2018,21(6):e20180201.

[45]冀幼平,张作朝,杨文涛 . 真空振动法制备固体浮力材料工艺与性能研究[J]. 复合材料科学与工程,2023(5):53-58.

JI Y P, ZHANG Z C, YANG W T. Study on preparation and properties of solid buoyancy materials by vacuum vibration casting[J]. Composites Science and Engineering,2023(5):53-58.

[46]YU S Z, LI X D, GUO X Y, et al. Curing and characteristics of N, N, N', N'-tetraepoxypropyl-4,4'-diaminodiphenyl⁃methane epoxy resin-based buoyancy material[J]. Polymers,2019,11(7):1137.

[47]潘顺龙,张敬杰,邓建国,等. 空心玻璃微球表面功能化及其应用研究进展[J]. 材料导报,2007,21(11):76-79.

PAN S L, ZHANG J J, DENG J G, et al. Progress in surface functionalization of hollow glass microspheres and its application[J]. Materials Review,2007,21(11):76-79.

[48]王平,严开祺,潘顺龙,等 . 深水固体浮力材料研究进展[J]. 工程研究-跨学科视野中的工程,2016,8(2):223-229.

WANG P, YAN K Q, PAN S L, et al. Research development on solid buoyancy material for deep-sea application[J]. Journal of Engineering Studies,2016,8(2):223-229.

[49]沈赫.“深海勇士”号载人潜水器正式交付[J]. 中国设备工程,2017(24):4.

SHEN H.“Deep Sea Warrior” manned submersible officially delivered[J]. China Plant Engineering,2017(24):4.

[50]刘坤,王金,杜志元,等. 大深度载人潜水器浮力材料的应用现状和发展趋势[J]. 海洋开发与管理,2019,36(12):68-71.

LIU K, WANG J, DU Z Y, et al. Application status and developing trend of buoyancy materials for large depth manned submersibles[J]. Ocean Development and Management,2019,36(12):68-71.