ISSN 1008-5548

CN 37-1316/TU

最新出版

基于冶金用白云岩尾矿采空区周围土壤改良剂筛选的Cd污染生态修复

Ecological remediation of cadmium pollution around metallurgical dolomite tailings goaf through the selection of soil amendments


陈 波1,2 ,杨 平1 ,李甲萌1,2 ,潘福霞1 ,张雅坤1 ,王安琪2 ,刘振东2 ,任宗明1

1. 山东师范大学 环境与生态研究院,山东 济南 250014;2. 水发集团有限公司,山东 济南 250102

引用格式:

陈波,杨平,李甲萌,等 . 基于冶金用白云岩尾矿采空区周围土壤改良剂筛选的 Cd 污染生态修复[J]. 中国粉体技术,2025,31(4):1-9.

CHEN Bo, YANG Ping, LI Jiameng, et al. Ecological remediation of cadmium pollution around metallurgical dolomite tailings goaf through the selection of soil amendments[J]. China Powder Science and Technology,2025,31(4):1−9.

DOI:10.13732/j.issn.1008-5548.2025.04.016

收稿日期:2024-09-27,修回日期:2024-12-15,上线日期:2025-04-03。

基金项目:国家自然科学基金项目,编号:42077224;山东省重点研发计划重大科技创新工程,编号:2020CXGC011404。

第一作者简介:陈波(1983—),男,高级工程师,学士,研究方向为固废处置及污染治理。E-mail:13792125114@163. com。

通信作者简介:任宗明(1978—),男,教授,博士,博士生导师,泰山产业领军人才,研究方向为环境污染修复。Email:zmren@sdnu. edu. cn。

摘要: 【目的】 针对冶金用白云岩矿区周边土壤重金属污染问题,实施有效措施以降低土壤中重金属含量。【方法】 针对山东省安丘市石埠子镇冶金用白云岩尾矿采空区周边土壤重金属镉(Cd)污染修复需求,结合木质素磺酸钠改性褐煤腐殖酸、 矿物改性褐煤腐殖酸、壳聚糖改性褐煤腐殖酸、 生物炭改性褐煤腐殖酸等4种土壤改良剂制备,分析测试改性腐殖酸对Cd形态的影响,筛选2种效果最好的土壤改良剂种植忍冬。【结果】 4种土壤改良剂的外表特征符合制备特点,且会明显增加土壤内重金属Cd的残渣态含量,降低其他具有生物有效性的重金属Cd形态。在土壤重金属Cd的综合治理中,结合重金属Cd超累积植物忍冬的种植,与木质素磺酸钠改性褐煤腐殖酸和生物炭改性褐煤腐殖酸的综合施治,会明显改变土壤金属形态,且土壤中Cd质量分数降低明显(p<0.05)。【结论】 经过改良的腐殖酸土壤改良剂与超富集植物相结合的综合治理策略展现出显著的成效,能够在治理周期为60 d内对目标区域土壤中的Cd等重金属污染实现高效的去除效果。

关键词: 冶金用白云岩尾矿; 重金属污染; 褐煤腐殖酸; 土壤改良剂; 生态修复

Abstract

Objective The study primarily aims to implement effective and sustainable measures for the remediation of heavy metal pollution. As heavy metal pollution in soil, especially around mining areas, become increasingly severe, it is critical to adopt comprehensive and effective measures that significantly reduce heavy metal concentration in soil.

Methods The study addressed the specific challenges of cadmium (Cd) pollution in agricultural soil surrounding the tailings goaf of a mining facility in Shibuzi Town, Anqiu City, Shandong Province, China.To mitigate Cd contamination,the study developed four tailored soil amendments:sodium lignosulfonate-modified lignite humic acid, mineral-modified lignite humic acid, chitosan-modified lignite humicacid, and biochar-modified lignite humic acid.These amendments were designed to enhance soil properties and immobilize heavy metals, particularly cadmium. Using advanced analytical techniques, the impact of these modified humic acids on cadmium in the contaminated soil was systematically investigated.Laboratory experiments were conducted over an extended period to monitor changes in chemical speciation, providing a comprehensive understanding of theinteractions between soil amendments and cadmium.Furthermore, the studyanalyzed thephysicochemical properties of the soil before and after adding amendments, ensuring a thorough evaluation of their effectiveness. Based on the performance metrics from these tests, two of the most effective soil amendments were selected for further study and potential large-scale field application.

Results and Discussion The external morphologies of the four amendments closely matched their respective preparation methods, exhibiting advantageous physicochemical properties that enhanced soil quality. Notably, these amendments significantly increased the residual cadmium content in the treated soil, while reducing the bioavailable forms. In addition to the amendments, agronomic methods using hyperaccumulator plants, such as L. japonicaThunb., were employed alongside strategic applications of sodium lignosulfonate-modified lignite humic acid and biochar-modified lignite humic acid. These interventions led to a substantial shiftin cadmium species within the amended soil, leading to a statistically significant reduction (p< 0.05) in cadmiumconcentrations. These findings underscore the importance of selecting appropriate amendments tailored to specific soil conditions.These selected amendments demonstrated a significant reduction in cadmium bioavailability, offering a promising solution for the restoration of Cd-contaminated agricultural soil in the region.

Conclusion This integrated approach achieved highly efficient removal of heavy metals, particularly cadmium (Cd), from contaminated soil. The efficacy of this method demonstrates its potential as a robust solution for mitigating soil heavy metal pollution. The research results contribute significantly to the field of soil remediation,providing technical support for developing more effective and sustainable remediation techniques. The integration of advanced humic acid-based soil amendments with hyperaccumulator plants brings an efficient approach to mitigate soil contamination. Throughout the 60-day remediation period, regular monitoring and analysis confirmed the substantial reduction in heavy metal concentrations, validating the effectiveness of the proposed strategy. In conclusion, this study presents a novel and promising integrated approach for the remediation of heavy metal pollution insoil. The results provide valuable insights and practical guidance for further development of advanced soil remediation techniques. Future studies should focus on refining this integrated approach to achieve even greater efficacy in mitigating heavy metal pollutionin contaminated soil and ensuring long-term environmental sustainability.

Keywords:metallurgical dolomite tailing; heavy metal pollution; lignite humic acid; soil amendment; ecological remediation


参考文献(References)

[1]汪学彬,杨重卿,张祥伟,等.工业固体废弃物制备陶粒及其应用研究进展[J].中国粉体技术,2021,27(2):1-8.

WANG X B,YANG C Q,ZHANG X W,et al.Research progress in preparation of ceramides from industrial solid wastes and

their application [J].China Powder Science and Technology, 2021, 27(2): 1-8.

[2]WANG X, HE M, XIE J, et al. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China)[J].Journal of Soils and Sediments, 2010, 10(5):827-837.

[3]邱文婕, 秦艳, 高品. 环境中重金属暴露对抗生素抗性基因演变影响研究进展[J]. 环境工程技术学报, 2021(6):1226-1231.

QIU W J, QIN Y, GAO P. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J] . Journal of Environmental Engineering Technology,2021,11(6): 226-1231.

[4]赵美微, 塔莉, 李萍. 土壤重金属污染及其预防、 修复研究[J].环境科学与管理,2007,32(6):70-72.

ZHAO M W,TA L,LI P.Research on heavy metal pollution to soil and countermeasures on prevention and restoration[J].Environmental Science and Management, 2007, 32(6): 70-72.

[5]SHUKLA L, JAIN N. A review on soil heavy metals contamination: effects, sources and remedies[J].Applied Ecology and Environmental Sciences, 2022, 10(1): 15-18.

[6]MISHRA V K,UPADHYAYA A R,PANDEY S K,et al.Heavy metal pollution induced due to coal mining effluent on sur-

rounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes[J].Bioresource Technology,2008,99(5):930-936.

[7]李兆辉,王光明,徐云明,等.镉、汞、铅污染及其微生物修复研究进展[J].中国畜牧兽医,2010(9):39-43.

LI Z H, WANG G M, XU Y M, et al. Progress on pollutions of cadmium, mercury, lead and microbial remediation[J].Chinese Animal Husbandry and Veterinary Medicine, 2010(9): 39-43.

[8]SHAKOOR M B,ALI S,FARID M,et al.Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: a review[J].Journal of Biodiversity and Environmental Sciences,2013,3(3):12-20.

[9]生态环境部.尾矿污染环境防治管理办法(部令第26号)[EB/OL].(2022-07-01)[2024-09-27].https://wzq1.mee.gov.

cn/gzk/gz/202204/t20220414_974709.shtml.

Ministry of Ecology and Environment. Management measures for environmental prevention and control of tailings pollution(Ministerial Order No.26) [EB/OL]. (2022-07-01)[2024-09-27]. https: //wzq1.mee.gov.cn/gzk/gz/202204/t20220414_974709.shtml.

[10]吴志强, 顾尚义, 李海英, 等. 重金属污染土壤的植物修复及超积累植物的研究进展[J]. 环境科学与管理, 2007,32(3): 67-75.

WU Z Q, GU S Y, LI H Y, et al. Phytoremediation of heavy metal S-contaminated soils and hyper-accumulator’s research advance[J]. Environmental Science and Management, 2007, 32(3): 67-75.

[11]邹德乙. 腐植酸对防治土壤重金属污染的作用[J]. 腐植酸, 2007(3): 50-51.

ZOU D Y.The role of humic acid in preventing and controlling soil heavy metal pollution[J].Humic Acid,2007(3):50-51.

[12]樊博, 林丽, 曹广民, 等. 不同演替状态下高寒草甸土壤物理性质与植物根系的相互关系[J]. 生态学报, 2020, 40(7): 2300-2309.

FAN B, LIN L, CAO G M, et al. Relationship between plant roots and physical soil prosperities in alpine meadows at different degradation stages[J]. Acta Ecological Sinica, 2020, 40(7): 2300-2309.

[13]林圣玉, 张龙, 车腾腾, 等. 不同表土厚度对土壤养分及抗蚀性影响[J]. 江西农业大学学报, 2015, 37(3): 556-563.

LIN S Y, ZHANG L, CHE T T, et al. The effect of thickness of topsoil on soil nutrients and anti-erodibility[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(3): 556-563.

[14]郑超, 何碧虹, 黄金丹. HS240149土壤检测报告[R]. 杭州: 浙江九安检测科技有限公司, 2024.

ZHENG C, HE B H, HUANG J D. HS240149 Soil test report[R].Hangzhou:Zhejiang Jiuan Monitoring Technology Co.LTD, 2024.2.2-2024.2.21.

[15]李甲萌,张雅坤,陈波,等.忍冬和钻叶紫菀对较低浓度镉污染的超富集特征比较研究[J].山东师范大学学报(自然科学版),2024, 9(3):1-6.

LI J M, ZHANG Y K, CHEN B, et al.The comparative research on the Cd Hyper accumulation characteristics between two Hyperaccumulators: Lonicera japonica Thunb. and Aster subulatus Michx[J]. Journal of Shandong Normal University(Natural Science),2024, 39(3): 1-6.

[16]王苗, 李艳红, 张远琴, 等. 不同溶剂提取宝清褐煤腐植酸的工艺优化及其特性研究[J]. 煤炭转化, 2021, 44(2):51-61.

WANG M, LI Y H, ZHANG Y Q, et al. Study on process optimization and characteristics of humic acid extraction from

Baoqing Lignite with different solvents[J]. Coal Conversion, 2021, 44(2): 51-61.

[17]张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881-1884.

ZHANG C Y, PENG P A, SONG J Z, et al. Utilization of modified BCR procedure for the chemical speciation of heavy

metals in Chinese soil reference material[J].Ecology and Environmental Sciences, 2012, 21(11): 1881-1884.

[18]国家环境保护局.土壤质量铅、 镉的测定石墨炉原子吸收分光光度法: GB/T 17141—1997[S]. 北京: 中国标准出版社, 1997.

China Environmental Protection Administration. Soil quality-determination of lead, cadmium-graphite furnace absorption spectrophotometry: GB/T17141—1997[S]. Beijing: China Standards Press, 1997.

[19]徐东耀, 徐小方, 王岩, 等. 提取褐煤中腐殖酸的新方法[J]. 煤炭加工与综合利用, 2007(2): 29-32.

XU D Y, XU X F, WANG Y, et al. A new method for extraction of humic acid from lignite[J]. Coal Processing & Comprehensive Utilization, 2007(2): 29-32.

[20]徐小方, 张华. 腐殖酸的提取方法研究[J]. 山东煤炭科技, 2009, 27(5): 110-111.

XU X F, ZHANG H. A method for extraction of humic acid[J]. Shandong Coal Science and Technology, 2009, 27(5):110-111.

[21]节剑勇, 孙力平, 邱春生, 等. 基于生物淋滤的城市污泥重金属溶出及形态迁移[J]. 环境工程学报, 2018, 12(3):939-946.

JIE J Y, SUN L P,QIU C S, et al. Dissolution and transformation of heavy metals in sewage sludge based on bioleaching[J].Chinese Journal of Environmental Engineering, 2018, 12(3): 939-946.

[22]MA H, LI X, WEI M,et al.Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil[J].Chemosphere, 2020, 239: 124706.

[23]YUE Y, YAO Y, LIN Q, et al. The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars[J]. Journal of Soils and Sediments, 2017, 17: 763-770.

[24]CHEN M, LI X M, YANG Q, et al. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China[J]. Journal of Hazardous Materials, 2008, 160(2/3): 324-329.

[25]YU R, HU G, WAND G L. Speciation and ecological risk of heavy metals in intertidal sediments of Quanzhou Bay, China[J].Environmental Monitoring and Assessment, 2010, 163(1): 241-252.

[26]LI Z, GE Y, WAN L.Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media[J].Journal of Hazardous Materials, 2014, 285C: 77-83.

[27]WU S P, DAI X Z, KAN J R, et al. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater[J].Chinese Chemical Letters, 2017(3): 625-632.

[28]UCHIMIYA M, LIMA I M, THOMAS K K, et al. Immobilization of heavy metal ions (Cu(II), Cd(II), Ni(II), and Pb(II)) by broiler litter-derived biochars in water and soil[J]. J Agric Food Chem, 2010, 58(9): 5538-5544.

[29]ABDELLAOUI Y.Sorption of Cd(II),Ni(II) and Zn(II) by natural,sodium, and acid-modified Montmorillonite Clay material[C].1st International Materials Science and Engineering for Green Energy Conference. 2017.

[30]高晓娇, 钟艺, 石双双. ZBJC240802F01-01土壤检测报告[R]. 青岛: 青岛中博华科检测科技有限公司, 2024.

GAO X J, ZHONG Y, SHI S S. ZBJC240802F01-01 soil test report[R]. Qingdao: Qingdao Zhongbohuke Monitoring Tec-

hnology Co. LTD, 2024.