参考文献(References)
[1]GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.
[2]LIU J P, GUO X X, LIN Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures[J]. Science China Materials, 2019, 62(6): 853-863.
[3]YANG T, ZHAO Y L, LUAN J H, et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy[J]. Scripta Materialia, 2019, 164: 30-35.
[4]SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.
[5]PATEL D, RICHARDSON M D, JIM B, et al. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04[J]. Journal of Nuclear Materials, 2020, 531: 152005.
[6]LIU X T, LEI W B, MA L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy[J]. Rare Metal Materials and Engineering, 2016, 45(9): 2201-2207.
[7]JIN Z Y, LV J, JIA H L, et al. Nanoporous Al-Ni-co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments[J]. Small, 2019, 15(47): e1904180.
[8]YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[9]LIU B, WANG J S, LIU Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion[J]. Intermetallics, 2016, 75: 25-30.
[10]ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93.
[11]LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227-230.
[12] ZHANG Y. History of high-entropy materials[M]. Springer Nature Singapore Pte Ltd, Singapore, 2019: 1-33.
[13] WU Z, BEI H, PHARR G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014, 81: 428-441.
[14]CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375: 213-218.
[15]YANG X, ZHANG Y, LIAW P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys[J]. Procedia Engineering, 2012, 36: 292-298.
[16]YUSENKO K V, RIVA S, CARVALHO P A, et al. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation[J]. Scripta Materialia, 2017, 138: 22-27.
[17]VRTNIK S, LUŽNIK J, KOŽELJ P, et al. Disordered ferromagnetic state in the Ce-Gd-Tb-Dy-Ho hexagonal high-entropyalloy[J]. Journal of Alloys and Compounds, 2018, 742: 877-886.
[18] ZHAO Y J, QIAO J W, MA S G, et al. A hexagonal close-packed high-entropy alloy: the effect of entropy[J]. Materials & Design, 2016, 96: 10-15.
[19] ZHOU N X, JIANG S C, HUANG T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics[J]. Science Bulletin, 2019, 64(12): 856-864.
[20] DANGWAL S, EDALATI K. High-entropy alloy TiV2ZrCrMnFeNi for hydrogen storage at room temperature with full reversibility and good activation[J]. Scripta Materialia, 2024, 238: 115774.
[21] FU Z Q, CHEN W P, WEN H M, et al. Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy[J]. Journal of Alloys and Compounds, 2015, 646: 175-182.
[22]颜建辉, 李凯玲, 汪异, 等. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10):1671-1675.
YAN J H, LI K L, WANG Y, et al. NbMoCrTiAl high-entropy alloy prepared by mechanical alloying and spark plasma sintering[J]. Materials Reports, 2019, 33(10): 1671-1675.
[23] WANG N R, WANG S R, GOU X X, et al. Alloying behavior and characterization of (CoCrFeNiMn)90M10 (M=Al, Hf) high-entropy materials fabricated by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2253-2265.
[24] KANG B, LEE J, RYU H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering: A, 2018, 712: 616-624.
[25] YIM D, JANG M J, BAE J W, et al. Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders[J].Materials Chemistry and Physics, 2018, 210: 95-102.
[26]崔小杰, 苏新磊, 刘岩, 等. 气雾化工艺对高熵合金粉体粒径的影响[J]. 特种铸造及有色合金, 2022, 42(4): 441-445.
CUI X J, SU X L, LIU Y, et al. Effects of gas atomization process on particle dimension of high-entropy alloy powders[J]. Special Casting & Nonferrous Alloys, 2022, 42(4): 441-445.
[27] LUKAC F, DUDR M, MUSALEK R, et al. Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr[J]. Journal of Materials Research, 2018, 33(19): 3247-3257.
[28] 谢仲豪, 付遨, 汪健, 等. 电子束选区熔化TaNbTiZr难熔高熵合金的微观组织与力学性能[J]. 中国有色金属学报,2024, 34(4): 1179-1189.
XIE Z H, FU A, WANG J, et al. Microstructure and mechanical properties of TaNbTiZr refractory high-entropy alloy fabricated by EBM[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(4): 1179-1189.
[29] XIA M, CHEN Y X, CHEN K W, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 917: 165501.
[30] HUBER F, BARTELS D, SCHMIDT M. In⁃situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M)[J]. Materials, 2021, 14(11): 3095.
[31] WANG J W, LIU B, LIU C T, et al. Strengthening mechanism in a high-strength carbon-containing powder metallurgical high entropy alloy[J]. Intermetallics, 2018, 102: 58-64.
[32]王繁强, 施麒, 刘辛, 等. 机械合金化-射频等离子球化制WMoTaNbV难熔高熵球形粉末[J]. 稀有金属材料与工程,2024, 53(12): 3428-3436.
WANG F Q, SHI L, LIU X, et al. Preparation of WMoTaNbV refractory high-entropy spherical powder by mechanical alloying-radio frequency plasma spheroidization[J]. Rare Metal Materals and Engineering, 2024, 53(12): 3428-3436.
[33] 顾涛, 汪礼敏, 胡强, 等. 喷雾干燥结合等离子球化法制备NbMoTaWZr-HfC粉末的特性与组织演变研究[J]. 稀有金属材料与工程, 2023, 52(6): 2161-2168.
GU T, WANG L M, HU Q, et al. Characteristics and microstructure evolution of spherical NbMoTaWZr-HfC powders fabricated by spray granulation combined with plasma spheroidization[J]. Rare Metal Materials and Engineering, 2023, 52(6):2161-2168.
[34] SINGH M P, SRIVASTAVA C. Synthesis and electron microscopy of high entropy alloy nanoparticles[J]. Materials Letters, 2015, 160: 419-422.
[35] 丁赔赔. Al-Co-Cr-Cu-Fe-Ni系列多主元合金粉体的制备和性能研究[D]. 马鞍山: 安徽工业大学, 2018.
DING P P. Preparation and properties of Al-Co-Cr-Cu-Fe-Ni series multi-principal alloy powders[D]. Maanshan: Anhui Universit of Technology, 2018.
[36] WU D S, KUSADA K, YAMAMOTO T, et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles[J]. Chemical Science, 2020, 11(47): 12731-12736.
[37] HUANG K, ZHANG B W, WU J S, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst[J]. Journal of Materials Chemistry A, 2020,8(24): 11938-11947.
[38] 杨艳, 何博文, 马华隆, 等. PtRuAgCoNi高熵合金纳米颗粒高效电催化氧化5-羟甲基糠醛[J]. 物理化学学报, 2022, 38(12): 218-225.
YANG Y, HE B W, MA H L, et al. PtRuAgCoNi high-entropy alloy nanoparticles for high-efficiency electrocatalytic oxidation of 5-hydroxymethylfurfural[J]. Acta Physico-Chimica Sinica, 2022, 38(12): 218-225.
[39] LIU M M, ZHANG Z H, OKEJIRI F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions[J]. Advanced Materials Interfaces, 2019, 6(7): 1900015.
[40] ZHANG D, SHI Y, ZHAO H, et al. The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2021, 9(2): 889-893.
[41] 刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 29(9): 2155-2184.
LIU Y, CAO Y K, WU W Q, et al. Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2155-2184.
[42] SCHUH B, VÖLKER B, TODT J, et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties[J]. Acta Materialia, 2018, 142: 201-212.
[43] CAO Y K, LIU Y, LI Y P, et al. Precipitation strengthening in a hot-worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy[J]. Materials Letters, 2019, 246: 186-189.
[44] GUO W M, LIU B, LIU Y, et al. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy[J]. Journal of Alloys and Compounds, 2019, 776: 428-436.
[45] RON T, LEON A, POPOV V, et al. Synthesis of refractory high-entropy alloy WTaMoNbV by powder bed fusion process using mixed elemental alloying powder[J]. Materials, 2022, 15(12): 4043.
[46] CHEN L, ZHANG X W, WANG Y Y, et al. Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding[J]. Materials Research Express, 2019, 6(11): 116571.
[47] KUANG S H, ZHOU F, ZHENG S S, et al. Annealing-induced microstructure and properties evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding[J]. Intermetallics, 2021, 129: 107039.
[48] ZHAO Y, WU M F, HOU J, et al. Microstructure and high temperature properties of laser cladded WTaNbMo refractory high entropy alloy coating assisted with ultrasound vibration[J]. Journal of Alloys and Compounds, 2022, 920: 165888.
[49] DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019, 25: 252-262.
[50] XIAO B, LIU H Y, JIA W P, et al. Cracking suppression in selective electron beam melted WMoTaNbC refractory high-entropy alloy[J]. Journal of Alloys and Compounds, 2023, 948: 169787.
[51] BRIF Y, THOMAS M, TODD I. The use of high-entropy alloys in additive manufacturing[J]. Scripta Materialia, 2015, 99: 93-96.
[52] XIAO B, JIA W P, TANG H P, et al. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting[J]. Journal of Materials Science & Technology, 2022, 108: 54-63.
[53] FENG J Y, WEI D X, ZHANG P L, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting[J]. Journal of Manufacturing Processes, 2023, 85: 160-165.
[54] 张爱荣, 梁红玉, 李烨. 激光熔覆AlCrCoFeNiMoTi0.75Si0.25高熵合金涂层刀具的性能[J]. 中国表面工程, 2013, 26(4):27-31.
ZHANG A R, LIANG H Y, LI Y. Property of AlCrCoFeNiMoTi0.75Si0.25 high-entropy alloy coating tool prepared by laser cladding[J]. China Surface Engineering, 2013, 26(4): 27-31.
[55] HSU W L, MURAKAMI H, ARAKI H, et al. A study of NiCo0.6Fe0.2CrxSiAlTiyHigh-entropy alloys for applications as a high-temperature protective coating and a bond coat in thermal barrier coating systems[J]. Journal of the Electrochemical Society, 2018, 165(9): C524-C531.
[56] XU Z Z, ZHANG P, WANG W, et al. AlCoCrNiMo high-entropy alloy as diffusion barrier between NiAlHf coating and Ni-based single crystal superalloy[J]. Surface and Coatings Technology, 2021, 414: 127101.
[57] WANG Z, WANG C, ZHAO Y L, et al. Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications[J]. Vacuum, 2021, 189: 110249.
[58] 周润桐, 邱雪源, 郭畅, 等. 电催化用高熵合金的研究进展[J]. 铸造技术, 2023, 44(9): 796-812.
ZHOU R T, QIU X Y, GUO C, et al. Recent progress of high-entropy alloys for electrocatalysis[J]. Foundry Technology,2023, 44(9): 796-812.
[59] FENG G, NING F H, SONG J, et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2021, 143(41): 17117-17127.
[60] NELLAIAPPAN S, KATIYAR N K, KUMAR R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization[J]. ACS Catalysis, 2020, 10(6): 3658-3663.
[61] MARQUES F, BALCERZAK M, WINKELMANN F, et al. Review and outlook on high-entropy alloys for hydrogen storage[J]. Energy & Environmental Science, 2021, 14(10): 5191-5227.
[62] SAHLBERG M, KARLSSON D, ZLOTEA C, et al. Superior hydrogen storage in high entropy alloys[J]. Scientific Reports,2016, 6: 36770.
[63] SILVA B H, ZLOTEA C, CHAMPION Y, et al. Design of TiVNb-(Cr, Ni or Co) multicomponent alloys with the same valence electron concentration for hydrogen storage[J]. Journal of Alloys and Compounds, 2021, 865: 158767.
[64] CHEN J T, LI Z Y, HUANG H X, et al. Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage[J]. Scripta Materialia, 2022, 212: 114548.
[65] MONTERO J, EK G, SAHLBERG M, et al. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy[J]. Scripta Materialia, 2021, 194: 113699.