刁 江1 ,谷文凤1,2 ,陶浩然1 ,禹华芳3 ,李鸿乂1 ,谢 兵1
1. 重庆大学 材料与科学工程学院,钒钛冶金及新材料重庆市重点实验室,重庆 400044;2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 9808577, Japan;3. 北京科技大学 绿色低碳钢铁冶金全国重点实验室,北京 100083
刁江,谷文凤,陶浩然,等. 钢渣的一次处理技术及综合利用研究进展[J]. 中国粉体技术,2025,31(3):1-11.
DIAO Jiang, GU Wenfeng, TAO Haoran, et al. Research progress on primary treatment technology and comprehensive utilization of steel slag[J]. China Powder Science and Technology,2025,31(3):1−11.
DOI:10.13732/j.issn.1008-5548.2025.03.015
收稿日期:2024-09-03,修回日期:2024-10-23,上线日期:2025-03-26。
基金项目:国家自然科学基金项目,编号:51974047;重庆英才计划项目,编号:cstc2022ycjh-bgzxm0003。
第一作者简介:刁江(1982—),男,副教授,博士,博士生导师,重庆市英才青年拔尖人才,研究方向为冶金物理化学。 E-mail:diaojiang@163. com。
摘要:【目的】 梳理钢渣的一次处理技术及综合利用研究进展,为钢渣的后续处理及资源化利用方式提供参考。【研究现状】综述主流钢渣一次处理技术的工作原理及特点,包括热闷法、热泼法、滚筒法、水淬法、风淬法;总结钢渣在钢铁行业、水泥和建筑行业、微晶玻璃和陶瓷生产、污水处理、农业化肥生产、功能材料方面的综合利用现状;总结在选择钢渣的一次处理工艺时,必须综合考虑如钢渣的利用途径、节能环保要求以及投资效益等众多因素,钢渣的一次处理技术在国内外钢铁企业中的应用呈现多样化特征。【结论与展望】虽然钢渣在建材、农业、污水处理、陶瓷等领域已有一定程度的应用,但距大规模、高附加值的应用还相差甚远;发展高利用率、多极化的钢渣一次处理技术,加大钢渣综合利用,是钢渣一次处理技术领域的关键课题。
关键词:钢渣;一次处理;综合利用;热闷法;滚筒法;热泼法
Significance The choice of primary treatment technology for steel slag has a significant impact on its subsequent processing and utilization. This paper briefly outlines the primary treatment technologies and comprehensive utilization methods for steel slag,providing a review of their working principles, advantages, and disadvantages. Technologies such as the hot-braising process,rotating drum process, and hot-pouring process are discussed. Given the current state of steel slag utilization, this paper also summarizes the challenges restricting its application and proposes improvement technologies and strategies for steel slag recycling.
Progress When selecting primary treatment methods, multiple factors should be considered, including its potential uses,energy conservation, environmental impacts, and economic benefits. The diverse applications of the primary treatment technologies for steel slag in major steel mills worldwide result from the differences in steelmaking equipment, processes, the physico⁃chemical properties of the slag, and its utilization in later stages. In China, steel slag is primarily used in metallurgical industry, particularly for iron beneficiation. After hot steel slag undergoes primary treatment and multi-stage crushing, magnetic separation is used to recover slag steel from the steel slag for steelmaking, recover magnetic separation powder for sintering, and tailings for building material utilization. As a result of the increasing scarcity of river sand due to mining restrictions, steel slag as building materials in construction is expected to increase, which could help address the large stockpiles of steel slag.
Conclusions and Prospects China faces large production quantities but low utilization rates for steel slag with large amounts stored in open piles, occupying land and posing environmental risks such as heavy metal leaching. Although steel slag has been used in various sectors, including construction, agriculture, wastewater treatment, and ceramics, it remains largely underutilized in large-scale, high-value applications. Maximizing the use of steel slag can reduce China's dependence on natural resources, reduce solid waste pressures, and mitigate carbon emissions, thus advancing the sustainable development in steel industry. Despite progress in steel slag research, comprehensive utilization of steel slag is hindered by the rising production rates and insufficient technological improvements, leading to annual declines in its utilization rate. Furthermore, the lack of large-scale industrialization and high-value applications remains a crucial concern. In the future, it is essential to focus on the recovery and utilization of sensible heat of molten steel slag, which is key to addressing the technological challenges and advancing the steel industry towards greener and more sustainable operations. Steel slag applications have expanded beyond traditional landfills to cement production and construction materials. Nevertheless, an effective strategy for large-scale recycling remains a challenge. Therefore, developing efficient, diversified primary treatment technologies and enhancing comprehensive utilization represent key issues in iron and steel metallurgy. This progress will provide a solid foundation for China’s green industrial development.
Keywords:steel slag; primary treatment technology; comprehensive utilization; hot-braising process; rotating drum process;hot-pouring process
[1] LIU C Y, GAO X, UEDA S, et al. Composition changes of inclusions by reaction with slag and refractory: a review [J].ISIJ International,2020,60(9):1835-1848.
[2] O’CONNOR J, NGUYEN T B T, HONEYANDS T, et al. Production, characterisation, utilisation, and beneficial soil application of steel slag: a review[J]. Journal of Hazardous Materials,2021,419:126478.
[3] GU W F, DIAO J, LAI Z Q, et al. Effect of MgO on phase structure and evolution of steelmaking slag during cooling[J].Metallurgical and Materials Transactions B,2024,55(4):2568-2579.
[4] 谷文凤. 液态钢渣风淬过程飞行动力学与凝固换热规律研究[D]. 重庆:重庆大学,2021.
GU W F. Study on flight dynamics and solidification heat transfer law of liquid steel slag during air quenching[D].Chongqing: Chongqing University,2021.
[5] XUE K, WANG J J, ZHU X P, et al. Energy and exergy analysis of waste heat recovery from pressurized hot smothering steel slag by solar organic Rankine cycle[J]. Journal of Thermal Analysis and Calorimetry,2023,148(19):10241-10250.
[6] 刘云鹏,庞凌,邹莹雪 . 热闷和热泼钢渣砂的体积稳定性能研究[J]. 武汉理工大学学报(交通科学与工程版),2020,44(6):1113-1117.
LIU Y P, PANG L, ZOU Y X. Study on volume stability of hot stuff and hot splash steel slag sand[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2020,44(6):1113-1117.
[7] GREGSON C, BROOKER R A, KOHN S C, et al. Thermodynamic and kinetic controls on phase stability and incorporation of water in larnite (β-Ca2SiO4): implications for calcium silicate inclusions in diamonds[J]. Contributions to Mineralogy and Petrology,2024,179(9):82.
[8] ZHU Z Q, GAO X, UEDA S, et al. Contribution of mineralogical phases on alkaline dissolution behavior of steelmaking slag[J]. ISIJ International,2019,59(10):1908-1916.
[9] MARTINS A C P, FRANCO DE CARVALHO J M, COSTA L C B, et al. Steel slags in cement-based composites: an ultimate review on characterization, applications and performance[J]. Construction and Building Materials,2021,291:123265.
[10]GAO W H, ZHOU W T, LYU X J, et al. Comprehensive utilization of steel slag: a review[J]. Powder Technology,2023,422:118449.
[11]MATSUURA H, YANG X, LI G Q, et al. Recycling of ironmaking and steelmaking slags in Japan and China[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(4):739-749.
[12]曹志栋,谢良德. 宝钢滚筒法液态钢渣处理装置及生产实绩[J]. 宝钢技术,2001(3):1-3.
CAO Z D, XIE L D. Facility for liquid slag treatment by rotary cylinder and its production results at baosteel[J]. Bao Steel Technology,2001(3):1-3.
[13]LIU X B, ZHANG C, YU H N, et al. Research on the properties of steel slag with different preparation processes[J].Materials,2024,17(7):1555.
[14]肖双林,陈荣全,谷孝保. 应用水淬法处理韶钢120 t转炉钢渣[J]. 材料研究与应用,2010,4(4):561-563.
XIAO S L, CHEN R Q, GU X B. The application and study of water quenching process used for treating slag at the 120 t converter of CSG[J]. Materials Research and Application,2010,4(4):561-563.
[15]李斌,力乙鹏,王晨霞,等 . 水淬钢渣混凝土应力−应变全曲线试验研究[J]. 建筑结构学报,2019,40(8):163-169.
LI B, LI Y P, WANG C X, et al. Experimental study on stress−strain curve of granulated steel slag concrete[J]. Journal of Building Structures,2019,40(8):163-169.
[16]WANG H, ZHANG W, WANG C, et al. Research on making micro-beads by gas quenching from re-melted modified BOF steelmaking slag[J]. Ironmaking & Steelmaking,2020,47(4):432-436.
[17]WANG L L, ZHANG Y Z, KE H B, et al. Experimental investigation on granulation characteristics and waste heat recovery of molten slag in gas quenching dry granulation technique[J]. Applied Thermal Engineering,2021,184:116295.
[18]WANG L L, ZHANG Y Z, LONG Y, et al. Simulation of primary breakup of molten slag in the gas quenching dry granulation process[J]. Applied Thermal Engineering,2020,181:115850.
[19]GU W F, DIAO J, JIANG L Y, et al. Phase development in steelmaking slags during a gas quenching granulation process[J]. Journal of Environmental Chemical Engineering,2024,12(3):112504.
[20]GU W F, DIAO J, HU R X, et al. Solidification and heat transfer of molten steel slag particles during air quenching process[J]. Journal of Iron and Steel Research International,2023,30(9):1834-1842.
[21]LIU C, KANG Y, ZHANG Y Z, et al. Granulation effect analysis of gas quenching blast furnace slag with different basicities [J]. Coatings,2020,10(4):372.
[22]吴跃东,彭犇,吴龙,等. 国内外钢渣处理与资源化利用技术发展现状综述[J]. 环境工程,2021,39(1):161-165.
WU Y D, PENG B, WU L, et al. Review on global development of treatment and utilization of steel slag[J]. Environmental Engineering,2021,39(1):161-165.
[23]王晓斌. 40万 t/a转炉钢渣蒸汽陈化处理生产线[J]. 起重运输机械,2020(7):91-98.
WANG X B. 400 000 t/a steam aging treatment line for converter steel slag[J]. Hoisting and Conveying Machinery,2020(7):91-98.
[24]ALEX T C, MUCSI G, VENUGOPALAN T, et al. BOF steel slag: critical assessment and integrated approach for utilization[J]. Journal of Sustainable Metallurgy,2021,7(4):1407-1424.
[25]FISHER L V, BARRON A R. The recycling and reuse of steelmaking slags:a review[J]. Resources, Conservation and Recycling,2019,146:244-255.
[26]俞海明,解英明,陈跃军,等. 70吨电炉热兑转炉液态钢渣的工艺实践[J]. 新疆钢铁,2012(2):7-9.
YU H M, XIE Y M, CHEN Y J, et al. Process practice of hot liquid slag from BOF charging into 70 t EAF[J]. Xinjiang Iron and Steel,2012(2):7-9.
[27]SAINI S, SINGH K. Recycling of steel slag as a flux for submerged arc welding and its effects on chemistry and performance of welds[J]. The International Journal of Advanced Manufacturing Technology,2021,114(3):1165-1177.
[28]MA M L, YANG H, BAI B, et al. Preparation and mechanism of silicate-based sintering material from large amount of steel slag[J]. Materials Research Express,2022,9(12):125503.
[29]WANG Z J, SOHN I. A review on reclamation and reutilization of ironmaking and steelmaking slags[J]. Journal of Sustainable Metallurgy,2019,5(1):127-140.
[30]SHU K Q, SASAKI K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: a review[J]. Journal of Cleaner Production,2022,373:133876.
[31]BAALAMURUGAN J, GANESH KUMAR V, CHANDRASEKARAN S, et al. Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding[J]. Journal of Hazardous Materials,2019,369:561-568.
[32]LI Z S, LI J C, SPOONER S, et al. Basic oxygen steelmaking slag: formation, reaction, and energy and material recovery[J]. Steel Research International,2022,93(3):2100167.
[33]JIAO W X, SHA A M, LIU Z Z, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements[J]. Journal of Cleaner Production,2020,261:121197.
[34]史以栋,胡中磊. 钢渣在江苏油田固井中的应用研究[J]. 内蒙古石油化工,2011,37(13):116-119.
SHI Y D, HU Z L. Study on application of steel slag in cementing in Jiangsu Oilfield[J]. Inner Mongolia Petrochemical Industry,2011,37(13):116-119.
[35]WANG H L, QIAN J S, LIU J, et al. Wear resistance analysis of steel slag aggregates based on morphology characteristics [J]. Construction and Building Materials,2023,40:133649.
[36]YAO D, YU H N, CHEN X, et al. Effect of surface modification on properties of steel slag aggregate and mixture[J].Construction and Building Materials,2023,402:133058.
[37]KEDAR H N, PATEL S, SHIROL S S. Bulk utilization of steel slag – fly ash composite: a sustainable alternative for use as road construction materials[J]. Innovative Infrastructure Solutions,2023,9(1):21.
[38]ZHAO D, SHEN W, WANG Y, et al. Direct use of original granular steel slag to prepare multi-phased clinker: sintering mechanism and properties [J]. Construction and Building Materials,2023,390:131575.
[39]ZHU X P, HUO Y D, ZHAO R M, et al. One-step microcrystalline glass preparation using smelting slag from waste automobile three-way catalysts through iron collection[J]. Applied Sciences,2022,12(22):11723.
[40]TAN W J, SUN T, MA F K, et al. Molecular dynamics simulation and viscosity analysis of red mud-steel slag glass-ceramics[J]. Materials,2023,16(22):7200.
[41]LI C W, ZHANG P P, ZENG L H, et al. Study on preparation of glass-ceramics from municipal solid waste incineration (MSWI) fly ash and chromium slag[J]. Journal of Building Engineering,2023,68:106080.
[42]裴立宅,肖汉宁. 钢铁工业废渣制备玻璃陶瓷的研究[J]. 现代技术陶瓷,2004,25(1):10-13.
PEI L Z, XIAO H N. Preparation of glass-ceramics using iron and steel slag[J]. Advanced Ceramics,2004,25(1):10-13.
[43]CHEN H, LI B W, ZHAO M, et al. Lanthanum modification of crystalline phases and residual glass in augite glass ceramics produced with industrial solid wastes[J]. Journal of Non-crystalline Solids,2019,524:119638.
[44]OUYANG S L, ZHANG Y X, CHEN Y X, et al. Preparation of glass-ceramics using chromium-containing stainless steel slag: crystal structure and solidification of heavy metal chromium[J]. Scientific Reports,2019,9:1964.
[45]邢芩瑞,马远,李宇. 不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J]. 有色金属科学与工程,2021,12(1):39-48.
XING Q R, MA Y, LI Y. Effect of CaO sources derived from different solid waste on the minerals and properties of prepared anorthite ceramics[J]. Nonferrous Metals Science and Engineering,2021,12(1):39-48.
[46]SHI C H, WANG X C, ZHOU S, et al. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: a review[J]. Journal of Water Process Engineering,2022,47:102666.
[47]KENNEDY A M, ARIAS-PAIĆ M. Application of powdered steel slag for more sustainable removal of metals from impaired waters[J]. Journal of Water Process Engineering,2020,38:101599.
[48]ROYCHAND R, KUMAR PRAMANIK B, ZHANG G M, et al. Recycling steel slag from municipal wastewater treatment plants into concrete applications: a step towards circular economy[J]. Resources, Conservation and Recycling,2020,152:104533.
[49]PLAZA L, CASTELLOTE M, NEVSHUPA R, et al. High-capacity adsorbents from stainless steel slag for the control of dye pollutants in water[J]. Environmental Science and Pollution Research International,2021,28(19):23896-23910.
[50]王晓军,高洪生,张磊,等. 钢渣硅肥在白菜种植中的应用[J]. 北方园艺,2018(22):18-22.
WANG X J, GAO H S, ZHANG L, et al. Application of slag calcium silicate fertilizer in Chinese cabbage planting[J].Northern Horticulture,2018(22):18-22.
[51]GAO D, WANG F P, WANG Y T, et al. Sustainable utilization of steel slag from traditional industry and agriculture to catalysis[J]. Sustainability,2020,12(21):9295.
[52]DAS S, GALGO S J, ALAM M A, et al. Recycling of ferrous slag in agriculture: potentials and challenges[J]. Critical Reviews in Environmental Science and Technology,2022,52(8):1247-1281.
[53]BARATI M, JAHANSHAHI S. Granulation and heat recovery from metallurgical slags[J]. Journal of Sustainable Metallurgy,2020,6(2):191-206.
[54]易承波,欧阳东,鲁刘磊. 钢渣作船体喷砂除锈磨料的可行性研究[J]. 表面技术,2010,39(4):91-93,105.
YI C B, OUYANG D, LU L L. The study on feasibility of steel slag abrasive used in shot peening derusting in hull[J].Surface Technology,2010,39(4):91-93,105.
[55]陈广言,饶磊. 风碎渣用于喷砂磨料的试验研究[J]. 冶金标准化与质量,2016,5:56-60.
CHEN G Y, RAO L. Experimental study on the use of wind crushed slag as sandblasting abrasive [J]. Metallurgical Standardization and Quality,2016,5:56-60
[56]李希军. 钢渣脱硫脱硝介孔材料和催化功能材料制备研究[D]. 西安:西安建筑科技大学,2018.
LI X J. Study on preparation of mesoporous materials and catalytic functional materials for desulfurization and denitrification of steel slag[D]. Xi’an: Xi’an University of Architecture and Technology,2018.
[57]顾恒星,金焰,陈华,等. 钢渣微粉改性碱激活性炭的烟气脱硝性能研究[C]//2017年首届全国冶金固废资源利用学术会议. 香港中医学会、教育研究基金会,2017.
GU H X, JIN Y, CHEN H, et al. Study on the flue gas denitrification performance of steel slag micro powder modified alkali activated carbon[C]//The First National Conference on the Utilization of Metallurgical Solid Waste Resources in 2017 Hong Kong Chinese Medicine Association, Education Research Foundation,2017.