1. 中石化石油化工科学研究院有限公司,北京 100083;2. 中国科学院 过程工程研究所 介科学与工程全国重点实验室,北京 100190;3. 中国科学院大学 化学与化工学院,北京 100049
何金龙,杨阳,刘晓星. 多点加载下单颗粒破碎特性的DEM模拟[J]. 中国粉体技术,2025,31(3):1-12.
HE Jinlong, YANG Yang, LIU Xiaoxing. DEM simulation of single particle breakage under multi-point loading[J]. China Powder Science and Technology,2025,31(3):1−12.
DOI:10.13732/j.issn.1008-5548.2025.03.008
收稿日期:2024-07-18,修回日期:2024-09-28,上线日期:2025-03-26。
基金项目:国家重点研发计划项目,编号:2022YFB4101703;炼油工艺与催化剂国家工程研究中心(中国石油化工股份有限公司石油化工科学研究院)开发基金课题,编号:KFA2022-051;介科学与工程全国重点实验室自主部署课题,编号:MESO-23-A05。
第一作者简介:何金龙(1979—),男,高级工程师,研究方向为催化剂制备工程技术。E-mail:hejl. ripp@sinope. com。
通信作者简介:刘晓星(1978—),男,研究员,研究方向为计算颗粒技术与应用、多相流计算流体力学。E-mail: xxliu@ipe. ac. cn。
摘要:【目的】 评估平均主应力准则、最大主应力准则、最大剪应力准则和最大接触力准则等 4种颗粒破碎准则的适用性,探究颗粒的破碎机制。【方法】 基于三维离散单元法数值模拟,考察随机多点加载以及单、双、三轴加载作用下球形和圆盘型颗粒试样的破碎特性,统计分析平均主应力、最大主应力、最大剪切应力以及最大接触力随加载点数目的变化规律。【结果】 随着加载的进行,加载点附近逐渐形成拉应力集中,导致颗粒试样的拉伸破坏;无论是随机加载构型还是确定加载构型,颗粒破碎时的平均主应力和最大主应力都是加载点数目的函数;对于随机加载构型,模拟得到的最大剪应力和最大接触力的平均值都与加载数目无关,但确定加载构型下这2个参数都随加载点数目而变化,说明加载点数目和空间排列方式会影响颗粒的临界破碎强度。【结论】 所考察的4种颗粒破碎准则都不能唯一确定颗粒的临界应力状态,基于4个参数建立颗粒破碎准则时,须要考虑加载构型的影响。
关键词:颗粒破碎;破碎准则;多点加载;单轴加载;离散单元法
Objective The four main criteria for particle breakage are the mean principal stress, maximum principal stress, maximum shear stress, and maximum contact force. Currently, there is no consensus on which particle breakage criterion is more reasonable. The aim of this study is to assess the applicability of these four particle breakage criteria and to discuss the possible reasons for the inconsistent conclusions reported in the literature.
Methods Based on a self-developed (discrete element method) DEM program, the critical state of macroscopic particles was evaluated by simulating the breakage of aggregate samples. To simulate arbitrary loading configuration, particle materials were first prepared through gravitational deposition. For a given number of loading points, particles with the same number of contacts were randomly selected from the material and replaced with aggregates. The surrounding particles were then moved centripetally to apply compressive loading. In this study, uniaxial, biaxial, and triaxial loading tests were also conducted to investigate the critical state of aggregates under specific loading configurations.
Results The DEM simulation results demonstrated that the mean principal stress and maximum principal stress at the moment of aggregate breakage varied with the number of loading points, regardless of whether the loading configuration was random or predetermined. The simulation results for the random loading configuration suggested that the average maximum shear stress and maximum contact force were approximately independent of the number of loading points. However, the simulation results for the predetermined loading configuration showed that these two parameters were related to the number of loading points, indicating that the maximum shear stress and maximum contact force were influenced by both the number and spatial arrangement of the loading points. The uniaxial compression results of the disc-shaped aggregate samples revealed that, in the direction perpendicular to the loading axis, tensile stress concentrations formed at the inner edge of the damaged region, leading to tensile failure of the sample. The result suggested that the effect of loading points on the critical state of particles originated from the confining pressure effect.
Conclusion The DEM simulation results demonstrate that none of the four investigated breakage criteria can uniquely determine the critical state of particles under loading. Therefore, to develop a particle breakage criterion based on these four parameters,the influence of loading configuration should be properly accounted for.
Keywords:particle crushing breakage; breakage criterion; multi-point loading; uniaxial loading; discrete element method
[1]MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials[J].Nature,2005,435(7045):1079-1082.
[2]LO FRANO R, AQUARO D, SCALETTI L. Thermo-mechanical characterization of ceramic pebbles for breeding blanket[J]. Fusion Engineering and Design,2016,109:383-388.
[3]WONGKHAM J, WEN T, LU B N, et al. Particle-resolved simulation of randomly packed pebble beds with a novel fluid-solid coupling method[J]. Fusion Engineering and Design,2020,161:111953.
[4]HAO J G, ZHAO Y F, YE M, et al. Influence of temperature on fluidized-bed catalyst attrition behavior[J]. Chemical Engineering & Technology,2016,39(5):927-934.
[5]DEBONO J, MCDOWELL G. Particle breakage criteria in discrete-element modelling[J]. Géotechnique,2016,66(12):1014-1027.
[6]LIU X X, WANG Y C, ZHANG Z X, et al. DEM investigation on the breakage of spherical aggregate under multi-contact loadings[J]. AIChE Journal,2021,67(7): e17294.
[7]TODISCO M C, WANG W, COOP M R, et al. Multiple contact compression tests on sand particles[J]. Soils and Foundations,2017,57(1):126-140.
[8]SALAMI Y, DANO C, HICHER P Y. An experimental study on the influence of the coordination number on grain crushing[J]. European Journal of Environmental and Civil Engineering,2019,23(3):432-448.
[9]SATONE H, IIMURA K, TERAOKA T, et al. Analysis of granule fracture under biaxial compression[J]. Ceramics International,2017,43(18):16835-16842.
[10]LIU X X, MA W C, HOU Q X, et al. End-wall effects on the mixing process of granular assemblies in a short rotating drum[J]. Powder Technology,2018,339:497-505.
[11]ZHANG D C, YANG X D, ZHAN J H, et al. Fluctuation of particles during funnel flow discharge from flat-bottomed silos[J]. AIChE Journal,2022,68(1): e17414.
[12]ÅSTRÖM J A, HERRMANN H J. Fragmentation of grains in a two-dimensional packing[J]. The European Physical Journal B:Condensed Matter and Complex Systems,1998,5(3):551-554.
[13]COUROYER C, NING Z, GHADIRI M. Distinct element analysis of bulk crushing: effect of particle properties and loading rate[J]. Powder Technology,2000,109(1/2/3):241-254.
[14]HANLEY K J, O’SULLIVAN C, HUANG X. Particle-scale mechanics of sand crushing in compression and shearing using DEM[J]. Soils and Foundations,2015,55(5):1100-1112.
[15]ZHU F, ZHAO J. A peridynamic investigation on crushing of sand particles[J]. Géotechnique,2019,69(6):526-540.
[16]ARTONI R, NEVEU A, DESCANTES Y, et al. Effect of contact location on the crushing strength of aggregates[J]. Journal of the Mechanics and Physics of Solids,2019,122:406-417.
[17]KUMAR R, ROMMEL S, JAUFFRÈS D, et al. Effect of packing characteristics on the discrete element simulation of elasticity and buckling[J]. International Journal of Mechanical Sciences,2016,110:14-21.
[18]ZHAO S W, EVANS T M, ZHOU X W, et al. Discrete element method investigation on thermally-induced shakedown of granular materials[J]. Granular Matter,2016,19(1):11.
[19]COBLE R L. Initial sintering of alumina and hematite[J]. Journal of the American Ceramic Society,1958,41(2):55-62.
[20]LIU X X, MARTIN C L, DELETTE G, et al. Elasticity and strength of partially sintered ceramics[J]. Journal of the Mechanics and Physics of Solids,2010,58(6):829-842.
[21]LIU X X, MARTIN C L, BOUVARD D, et al. Strength of highly porous ceramic electrodes[J]. Journal of the American Ceramic Society,2011,94(10):3500-3508.
[22]周爽,苏景林,刘晓星,等 . 多孔陶瓷材料力学特性的离散单元法定量模拟[J]. 中国科学:物理学 力学 天文学,2019,49(6):28-39.
ZHOU S, SU J L, LIU X X, et al. Quantitative simulation of mechanical properties of porous ceramic materials by discrete element method[J]. Scientia Sinica :Physica, Mechanica & Astronomica,2019,49(6):28-39.
[23]张增绪,王永昌,喻寅,等. 部分烧结陶瓷材料力学特性的DEM模拟[J]. 过程工程学报,2021,21(3):341-352.
ZHANG Z X, WANG Y C, YU Y, et al. DEM modeling of mechanical behavior of partially sintered ceramics[J]. The Chinese Journal of Process Engineering,2021,21(3):341-352.
[24]CHESHOMI A, SHESHDE E A. Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test[J]. Journal of Petroleum Science and Engineering,2013,111:121-126.
[25]RUSSELL A R, MUIR WOOD D. Point load tests and strength measurements for brittle spheres[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(2):272-280.
[26]WANG W, COOP M R. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera[J]. Géotechnique,2016,66(12):984-998.
[27]POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329-1364.
[28]HONDROS G . The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete[J]. Applied Sciences 1959,10(8):246-268.
[29]WANG P, ARSON C. Discrete element modeling of shielding and size effects during single particle crushing[J]. Comput⁃ers and Geotechnics,2016,78:227-236.