ISSN 1008-5548

CN 37-1316/TU

最新出版

基于响应面法的碱活化钢渣基胶凝材料配比优化

Optimization of alkali‐activated steel slag‐based cementitious material proportions using response surface methodology


张轩硕a ,朱一丁a ,兰永军a ,王红雨a ,李宏波a,b,c

宁夏大学 a土木与水利工程学院,b. 宁夏节水灌溉与水资源调控工程技术研究中心,c. 旱区现代农业水资源高效利用教育部工程研究中心,宁夏 银川 750021


引用格式:

张轩硕,朱一丁,兰永军,等. 基于响应面法的碱活化钢渣基胶凝材料配比优化[J]. 中国粉体技术,2025,31(3):1-17.

ZHANG Xuanshuo, ZHU Yiding, LAN Yongjun, et al. Optimization of alkali‐activated steel slag‐based cementitious material proportions using response surface methodology[J]. China Powder Science and Technology,2025,31(3):1−17.

DOI:10.13732/j.issn.1008-5548.2025.03.016

收稿日期:2024-11-06,修回日期:2024-12-27,上线日期:2025-03-14。

基金项目:国家自然科学基金项目,编号:52069025;宁夏自然科学基金项目,编号:2024AAC03064。

第一作者简介:张轩硕(1996—),男,博士生,研究方向为固废材料利用理论及技术。E-mail:zxsnikea@163.com。

通信作者简介:朱一丁(1967—),男,教授,硕士,研究方向为新材料与岩土工程。E-mail:lhbiongo@qq.com。


摘要:【目的】 探明复合激发剂各因素间交互作用对碱活化钢渣基胶凝材料(alkali‐activated steel slag‐based cementitious material,ASCM)强度性能的影响及揭示其强度提升机制。【方法】 以硅灰、生石灰和Na2SO4掺量(质量分数,下同)为自变量,以ASCM胶结体龄期为3、7、28 d的抗压强度为响应值,采用Box-Behnken响应面法设计17组试验,建立二次多项式回归模型,结合数值优化方法优化模型自变量参数,并分析ASCM试样水化产物组成及微观结构形貌。【结果】 生石灰和硅灰掺量、 Na2SO4和硅灰掺量的交互作用是影响ASCM胶结体强度性能的关键因素,复合活化剂最优配比为硅灰掺量为1. 1%,生石灰掺量为 4%, Na2SO4掺量为 1. 3%,该条件下 ASCM 胶结体龄期为 3、7、28 d 的抗压强度分别为 26. 33、38. 14、46. 73 MPa,与预测值相对误差均小于5%,表明模型精度较高,可靠性较强。【结论】 优化复合激发剂配比有效促进ASCM胶凝产物生成与微观结构改善,使得其表现出良好的力学强度。

关键词:响应面法;钢渣;碱活化;胶凝材料;微观结构

Abstract

Objective This study aims to investigate the effects of various types,concentrations, and proportions of composite activators on the strength properties of alkali-activated steel slag-based cementitious materials (ASCM). By analyzing the synergistic effects of composite activators,the study examines their influence on the microstructure, chemical composition, and hydration products of ASCM. It aims to reveal the underlying mechanisms of strength enhancement in ASCM, thereby providing a theoretical foundation and technical support for the efficient preparation of these materials in engineering applications.

Methods A systematic experimental approach was employed using Box−Behnken response surface methodoligy (RSM). Seventeen experimental groups were designed with silica fume, quicklime, and Na2SO4 contents as independent variables. The compressive strength of ASCM specimens at 3,7, and 28 days was selected as the response variable. A quadratic polynomial regression model was developed to identify the relationship between activator variables and strength performance. To optimize theactivator formulation, model parameters were analyzed using the Numencial optimization function. This enabled the identification of the optimal activator proportions. Advanced characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were used to analyze hydration products and microstructural morphology, revealing the mechanisms driving strength enhancement.

Results and Discussion The results demonstrated that the interactions between quicklime and silica fume, as well as between Na2SO4 and silica fume, significantly influenced ASCM strength. The optimal composite activator composition was identified as 1. 1% silica fume,4% quicklime, and 1. 3% Na2SO4. Under these conditions, the compressive strength of ASCM reached 27. 51 MPa,36. 76 MPa, and 45. 24 MPa at 3,7, and 28 days, respectively. Notably, the relative error between experimental results and model predictions was less than 5%, indicating high accuracy and reliability of the regression model. The interactions among activator components promoted the formation of calcium silicate hydrate (C-S-H) gel sand ettringite (AFt), which are crucial for improving the strength of cementitious materials. The dense reticulate structure formed by these hydration products improved microstructural integrity of ASCM. Furthermore, silica fume particles, which did not directly participate in the activation reaction, served as a filler, further enhancing packing density of the matrix. This combination of chemical and physical enhancements resulted in a significant improvement in the macroscopic mechanical strength of ASCM. The analysis of hydration products confirmed the formation of a robust microstructure,which contributed to the enhanced strength properties of ASCM.

The composite activators worked synergistically to optimize the development of hydration products and address potential microstructural weaknesses. This synergy ensured that ASCM exhibited excellent strength and durability, making it a viable material for a wide range of engineering applications.

Conclusion This study highlights the role of composite activators and silica fume in enhancing ASCM mechanical properties and durability by improving microstructure and packing density, offering valuable insights for optimizing formulations tailored to engineering needs. By utilizing industrial byproducts like steel slag, ASCM serves as a sustainable alternative to Portland cement, reducing environmental impact and promoting waste management. These findings lay a foundation for developing next generation construction materials, with future research focusing on ASCM's long-term durability and large-scale application performance.

Keywords:response surface methodology; steel slag; alkaliactivation;cementitious material; microscopic structure


参考文献(References)

[1]贺晋瑜,何捷,王郁涛,等. 中国水泥行业二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):347-355.

HE J Y, HE J, WANG Y T, et al. Research on the path of carbon dioxide emissions peaking in China’s cement industry[J]. Research of Environmental Sciences,2022,35(2):347-355.

[2]BENHELAL E, ZAHEDI G, SHAMSAEI E, et al. Global strategies and potentials to curb COemissions in cement industry[J]. Journal of Cleaner Production,2013,51:142-161.

[3]莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料的性能及其碳足迹评价[J]. 建筑材料学报,2023,26(11):1207-1213.

MO Y Y, TANG W, ZHAN B J, et al. Performance and carbon footprint evaluation of carbonized recycled micronized cement based materials[J]. Journal of Building Materials,2023,26(11):1207-1213.

[4]OTAVIO C, MARCOS D B W, MARI V, et al. Paving the way for sustainable decarbonization of the European cement

industry[J]. Nature Sustainability,2024,7(5):568-580.

[5]YU Z, WANG B M, LI T R, et al. Toughness study of polyacrylamide-modified slag/fly ash-based alkali-activated cementitious materials[J]. Construction and Building Materials,2024,450:138622.

[6]CHEN P, LI Y H, ZHANG J X, et al. Influence of interface agent and form on the bonding performance and impermeability of ordinary concrete repaired with alkali-activated slag cementitious material[J]. Journal of Building Engineering,2024,94:110043.

[7]张兴武,刘鹏,程钰. 矿化微生物对赤泥基碱激发胶凝材料性能的增强研究[J]. 建筑材料学报,2024,27(1):9-15.

ZHANG X W, LIU P, CHENG Y. Study on the enhancement of the properties of red mud base excitation cementitious

materials by mineralized microorganisms[J]. Journal of Building Materials,2024,27(1):9-15.

[8]张耀君,杨梦阳,康乐,等. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报,2016,31(3):225-233.

ZHANG Y J, YANG M Y, KANG L, et al. Research progress of a new class of alkali-excited cementitious material catalysts[J]. Journal of Inorganic Materials,2016,31(3):225-233.

[9]孙开强,刘琳,郑蕻陈. 碱激发矿渣-粉煤灰胶凝材料力学性能影响因素分析[J]. 硅酸盐通报,2024,43(9):3313-3319.

SUN K Q, LIU L, ZHENG H C. Analysis of influencing factors of mechanical properties of alkali-activated slag−fly ash cementitious materials[J]. Bulletin of the Chinese Ceramic Society,2024,43(9):3313-3319.

[10]薛生国, 朱铭星, 杨兴旺, 等. 赤泥激发胶凝材料及路用研究进展[J]. 中国有色金属学报,2023,33(10):3421-3439.

XUE S G,ZHU M X,YANG X W, et al. Research progress on red mud excitation cementitious materials and road applications[J]. The Chinese Journal of Nonferrous Metals,2023,33(10):3421-3439.

[11]邵俐,李佩青,王彬杰 . 冻融循环对碱激发高炉矿渣微粉加固软土强度的影响[J]. 公路交通科技,2022,39(1):40-47.

SHAO L,LI P Q,WANG B J. Effect of freeze−thaw cycles on the strength of alkali-activated blast furnace slag powder to strengthen soft soil[J]. Journal of Highway and Transportation Research and Development,2022,39(1):40-47.

[12]YANG F K, LIU J H, JIA H R, et al. Corrosion mechanism of alkali-activated slag/metakaolin materials under carbonic acid solution[J]. Cement and Concrete Composites,2024,154:105779.

[13]田中男,张争奇,何勇海,等. 全固废地聚物稳定钢渣基层的性能及微观特性分析[J]. 中国公路学报,2023,36(12):131-142.

TIAN Z N, ZHANG Z Q, HE Y H, et al. Analysis of the properties and microscopic characteristics of the whole solid waste ground polymer stabilized steel slag base[J]. China Journal of Highway and Transport,2023,36(12):131-142.

[14]ZHANG Z H, OUYANG J, LIU J X. Exploration of steel slag by lignin and sodium citrate modification for mechanical properties and stability of steel slag−cement cementitious materials[J]. Journal of Cleaner Production,2024,478:143971.

[15]GUO L Z,LIU J H, CHEN D P, et al. Mechanical properties and microstructure evolution of alkali-activated GGBS−fly ash−steel slag ternary cements[J]. Construction and Building Materials,2024,444:137727.

[16]李召峰,刘超,王川,等 . 赤泥-高炉矿渣-钢渣三元体系注浆材料试验研究[J]. 工程科学与技术,2021,53(1):203-211.

LI S F, LIU C, WANG C, et al. Experimental study on grouting materials of red mud-blast furnace slag-steel slag ternary system[J]. Advanced Engineering Sciences,2021,53(1):203-211.

[17]王强. 钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D]. 北京:清华大学,2010.

WANG Q. The cementitious properties of steel slag and its role in the hydration and hardening process of composite cementitious materials[D]. Beijing: Tsinghua University,2010.

[18]张长森,李杨,胡志超,等. 钠盐激发钢渣水泥的早期水化特性及动力学[J]. 建筑材料学报,2021,24(4):710-715.

ZHANG C S, LI Y, HU Z C, et al. Early hydration characteristics and kinetics of slag cement excited by sodium salt[J].Journal of Building Materials,2021,24(4):710-715.

[19]张少峰,牛荻涛,罗大明,等. 激发剂对钢渣水泥的活化及作用机理[J]. 哈尔滨工业大学学报,2024,56(1):165-172.

ZHANG S F, NIU D T, LUO D M, et al. Activation and mechanism of activator on steel slag cement[J]. Journal of Harbin Institute of Technology,2024,56(1):165-172.

[20]胡瑾, 王强, 杨建伟 . 钢渣-硅灰复合矿物掺合料对混凝土性能的影响[J]. 清华大学学报(自然科学版),2015,55(2):145-149.

HU J, WANG Q, YANG J W. Effect of steel slag−silica fume composite mineral admixture on concrete properties[J]. Journal of Tsinghua University(Science and Technology),2015,55(2):145-149.

[21]孙浩,胡凯伟,李崇智,等. 硫酸铝激发钢渣复合微粉的作用机理研究[J]. 材料导报,2024,38(增刊1):341-345.

SUN H, HU K W, LI C Z, et al. Study on the mechanism of action of aluminum sulfate excitation of steel slag composite powder[J]. Materials Reports,2024,38(S1):341-345.

[22]国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京:中国标准出版社,2021.

State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test method of cement mortar strength(ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China,2021.

[23]李双喜,韩静,李宛强,等. 低水胶比对复合胶凝体系水化特性和动力学影响研究[J]. 应用基础与工程科学学报,2023,31(3):767-779.

LI S X,HAN J,LI W Q,et al. Effect of low water-glue ratio on hydration characteristics and kinetics of composite cementitious system[J]. Journal of Basic Science and Engineering,2023,31(3):767-779.

[24]高英力,孟浩,万红伟,等 . 电石渣碱激发矿渣/粉煤灰胶凝材料性能及微结构[J]. 中南大学学报(自然科学版),2023,54(5):1739-1747.

GAO Y L, MENG H, WAN H W, et al. Calcium carbide slag alkali excitation slag/fly ash cementitious material properties and microstructure[J]. Journal of Central South University(Science and Technology),2023,54(5):1739-1747.

[25]杨清,张秀芝,刘迪,等. 普通硅酸盐-硫铝酸盐复合胶凝体系水化性能和机理研究[J]. 材料导报,2018,32(增刊2):517-521,534.

YANG Q, ZHANG X Z, LIU D, et al. Study on hydration performance and mechanism of ordinary silicate−sulfoaluminate composite cementitious system[J]. Materials Reports,2018,32(S2):517-521,534.

[26]姜关照,吴爱祥,王贻明,等. 生石灰对半水磷石膏充填胶凝材料性能影响[J]. 硅酸盐学报,2020,48(1):86-93.

JIANG G Z, WU A X, WANG Y M, et al. Effect of quicklime on the properties of semi-hydrate phosphogypsum filling

cementitious materials[J]. Journal of the Chinese Ceramic Society,2020,48(1):86-93.

[27]张浩,龙红明,杨刚,等. 基于化学激发的钢渣胶凝活性[J]. 过程工程学报,2017,17(4):810-813.

ZHANG H, LONG H M, YANG G, et al. Gelling activity of steel slag based on chemical excitation[J]. The Chinese

Journal of Process Engineering,2017,17(4):810-813.

[28]王紫嫣, 水中和, 孙涛,等 . 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报,2023,37(增刊1):277-283.

WANG Z Y, SHUI Z H, SUN T, et al. Effect of high-iron steel slag as alkali activator on the coagulation and hardening properties of perthiphosphogypsum slag[J]. Materials Reports,2023,37(S1):277-283.

[29]LI W Z, CAO M L,LIU F Y, et al. Pretreatment of alkali activation and carbonation of steel slag for using as binding material[J]. Cement and Concrete Composites,2024,149:105521.

[30]WANG H Y, ZHAO X H, GUO H, et al. Effects of alkali-treated plant wastewater on the properties and microstructures of alkali-activated composites[J]. Ceramics International,2023,49(5):8583-8597.

[31]王剑锋,常磊,王艳,等. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报,2023,37(11):119-127.

WANG J F, CHANG L, WANG Y, et al. Research status of optimization of cementitious activity and volume stability of steel slag[J]. Materials Reports,2023,37(11):119-127.

[32]王紫,周志尧,张喆,等. 多元固废基胶凝体系固化盐渍土的力学性能[J]. 中国粉体技术,2024,30(5):57-69.

WANG Z, ZHOU Z Y, ZHANG Z, et al. Mechanical properties of solidified saline soil with multiple solid waste-based

cementitious systems[J]. China Powder Science and Technology,2024,30(5):57-69.

[33]朱德举,赵雪薇,郭帅成. 海水与矿物掺合料对水泥基材料微结构和力学性能的影响[J]. 硅酸盐学报,2024,52(5):1477-1485.

ZHU D J, ZHAO X W, GUO S C. Effect of seawater and mineral admixtures on the microstructure and mechanical properties of cement-based materials[J]. Journal of the Chinese Ceramic Society,2024,52(5):1477-1485.