杨蕾, 黄效东, 单海, 舒项辰, 邓崇海, 周宁宁, 胡坤宏
合肥大学 能源材料与化工学院 安徽 合肥 230601
引用格式:
杨蕾, 黄效东, 单海, 等. 碳量子点复合材料的制备及应用研究进展[J]. 中国粉体技术, 2025, 31(3): 1-9.
Citation:YANG Lei, HUANG Xiaodong, SHAN Hai, et al. Research progress of preparation and applications of carbon quantum dot composites[J]. China Powder Science and Technology, 2025, 31(3): 1-9.
DOI:10.13732/j.issn.1008-5548.2025.03.010
收稿日期: 2024-07-16,修回日期: 2024-08-13,上线日期: 2025-03-06。
基金项目: 国家自然科学基金项目,编号:61804039,52075144;合肥大学人才科研基金项目,编号:20RC35。
第一作者简介: 杨蕾(1983—),男,副教授,博士,硕士生导师,研究方向为光电半导体材料。E-mail: ylei531@163.com。
通信作者简介: 胡坤宏(1975—),男,教授,博士,硕士生导师,安徽省创新人才、学术和技术带头人后备人选,研究方向为能源化工、机械摩擦学。E-mail: chemhu@hfuu.edu.cn。
摘要: 【目的】 梳理碳量子点(carbon quantum dots,CQDs)基复合材料的制备方法及研究进展。【研究现状】 综述CQDs具有环境友好、低成本、易制备等优点;总结CQDs及其复合材料的制备方法,如化学消融法、电化学碳化法、激光烧蚀法、微波辐射法和水热合成法;概括根据CQDs的可调荧光发射、优异的物理化学性能和易功能化等特性,介绍CQDs及复合材料在有机污染降解、医学伤口治疗、光热肿瘤治疗、光电催化和传感器方面的应用。【结论与展望】 指出CQDs作为一种环保、高效的功能材料,合成技术的精细调控、发光机制的深入研究是未来的主要方向。
关键词: 碳量子点; 复合材料; 制备; 光电催化; 生物医学
Abstract
Significance Compared to traditional semiconductor quantum dots, carbon quantum dots (CQDs) offer advantages such as environmental friendliness, low cost, and ease of preparation, which have attracted widespread interest among researchers. This paper reviews the preparation methods and research progress of CQD-based composite materials.
Progress Researchers have utilized various reactants and precursors, employing multiple synthetic pathways to produce CQDs. The two primary synthesis routes are the top-down and bottom-up approaches. In the top-down synthesis approach, larger carbon materials, such as carbon nanotubes, are broken down under specific conditions to form small-sized CQDs. This approach includes methods such as chemical ablation, electrochemical carbonization, and laser ablation, which significantly simplify the preparation process. Since carbon is used as the raw material, these methods are cost-effective and suitable for large-scale production. However, it is challenging to precisely control the size of the CQDs, and the decomposition process may generate defects, impacting their performance. In contrast, the bottom-up synthesis method uses small molecules and compounds (e.g., carbohydrates) as precursors to build more complex structures, primarily through microwave radiation or hydrothermal synthesis. The bottom-up approach allows precise control over the size, shape, and surface functionalization of CQDs, resulting in fewer defects and improved optical properties. However, this approach is more complex and requires special precursors, increasing synthesis difficulty and cost. CQDs are widely applied in areas such as photocatalysis, pollutant degradation, biomedicine, photoelectrocatalysis, and sensors. By effectively controlling the size, surface defects, and optical properties of CQDs, it is possible to fine-tune their band structure, thereby enhancing their performance and expanding their range of applications.
Conclusions and Prospects The synthesis methods of CQDs should be more refined, environmentally friendly, efficient, and multifunctional to meet practical application needs. Future research on the fluorescence properties of CQDs should focus more on their underlying mechanisms, optimizing performance, and expanding applications in multiple fields. Future investigations should emphasize the effects of surface functional group incorporation, surface modifications, and doping on the electronic structure and optical properties of CQDs. These in-depth studies will facilitate the design of CQDs with specific functionalities, such as improved biocompatibility or enhanced selective recognition capabilities.
Keywords: carbon quantum dots; composites; preparation; photoelectrocatalysis; biomedicine
参考文献(References)
[1] LIU J J, LI R,YANG B. Carbon dots: a new type of carbon-based nanomaterial with wide applications[J]. ACS Central Science, 2020, 6(12): 2179-2195.
[2] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
[3] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757.
[4] NOOR S, HAIDER R S, NOOR S, et al. Role of conductive channels via CQDs on NiO/g-C3N4 Z-scheme composite as a bi-functional photocatalyst[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36517-36529.
[5] ZHANG Y, MA H, CHEN X W, et al. CQDs improved the photoelectrocatalytic performance of plasma assembled WO3/TiO2-NRs for bisphenol A degradation[J]. Journal of Hazardous Materials, 2023, 443: 130250.
[6] AZAM N, NAJABAT ALI M, JAVAID KHAN T. Carbon quantum dots for biomedical applications: review and analysis[J]. Frontiers in Materials, 2021, 8: 700403.
[7] ZHU P D, GAN Y, LIN K P, et al. Dual-response detection of oxidized glutathione, ascorbic acid, and cell imaging based on pH/redox dual-sensitive fluorescent carbon dots[J]. ACS Omega, 2020, 5(9): 4482-4489.
[8] WANG J M, JIANG J Z, LI F Y, et al. Emerging carbon-based quantum dots for sustainable photocatalysis[J]. Green Chemistry, 2023, 25(1): 32-58.
[9] KWON W, DO S, KIM J H, et al. Control of photoluminescence of carbon nanodots via surface functionalization using Para-substituted anilines[J]. Scientific Reports, 2015, 5: 12604.
[10] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie (International Ed), 2013, 52(14): 3953-3957.
[11] LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1): 362-381.
[12] LI J R, ZHAO X J, GONG X. The emerging star of carbon luminescent materials: exploring the mysteries of the nanolight of carbon dots for optoelectronic applications[J]. Small, 2024, 20(31): e2400107.
[13] WANG J Y, FU Y, GU Z H, et al. Multifunctional carbon dots for biomedical applications: diagnosis, therapy, and theranostic[J]. Small, 2024, 20(3): e2303773.
[14] YANG Y, GUO Q Y, LI Q W, et al. Carbon quantum dots confined into covalent triazine frameworks for efficient overall photocatalytic H2O2 production[J]. Advanced Functional Materials, 2024, 34(29): 2400612.
[15] HAN W Y, ZHANG H, LI D G, et al. Surface engineered carbon quantum dots for efficient photocatalytic hydrogen peroxide production[J]. Applied Catalysis B: Environment and Energy, 2024, 350: 123918.
[16] LI W H, WANG X H, LIN J S, et al. Controllable and large-scale synthesis of carbon quantum dots for efficient solid-state optical devices[J]. Nano Energy, 2024, 122: 109289.
[17] BEHBOUDI H, MEHDIPOUR G, SAFARI N, et al. Carbon quantum dots in nanobiotechnology[M]. England: Springer International Publishing, 2019: 145-179.
[18] GONG J, AN X Q, YAN X J. A novel rapid and green synthesis of highly luminescent carbon dots with good biocompatibility for cell imaging[J]. New Journal of Chemistry, 2014, 38(4): 1376-1379.
[19] KAUR M, KAUR M, SHARMA V K. Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment[J]. Advances in Colloid and Interface Science, 2018, 259: 44-64.
[20] DESMOND L J, PHAN A N, GENTILE P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy[J]. Environmental Science: Nano, 2021, 8(4): 848-862.
[21] JIANG Q W, JING Y, NI Y Y, et al. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO-[J]. Microchemical Journal, 2020, 157: 105111.
[22] EL-SHABASY R M, FAROUK ELSADEK M, MOHAMED AHMED B, et al. Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications[J]. Processes, 2021, 9(2): 388.
[23] JANUS Ł, RADWAN-PRAGŁOWSKA J, PIĄTKOWSKI M, et al. Facile synthesis of surface-modified carbon quantum dots (CQDs) for biosensing and bioimaging[J]. Materials, 2020, 13(15): 3313.
[24] KHAN M E, MOHAMMAD A, YOON T. State-of-the-art developments in carbon quantum dots (CQDs): photo-catalysis, bio-imaging, and bio-sensing applications[J]. Chemosphere, 2022, 302: 134815.
[25] NAMDARI P, NEGAHDARI B, EATEMADI A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review[J]. Biomedecine & Pharmacotherapie, 2017, 87: 209-222.
[26] TIAN L, GHOSH D, CHEN W, et al. Nanosized carbon particles from natural gas soot[J]. Chemistry of Materials, 2009, 21(13): 2803-2809.
[27] ALAGHMANDFARD A, SEDIGHI O, TABATABAEI REZAEI N, et al. Recent advances in the modification of carbon-based quantum dots for biomedical applications[J]. Materials Science and Engineering: C, 2021, 120: 111756.
[28] DENG J H, LU Q J, MI N X, et al. Electrochemical synthesis of carbon nanodots directly from alcohols[J]. Chemistry-A European Journal, 2014, 20(17): 4993-4999.
[29] KANSAY V, SHARMA V D, CHANDAN G, et al. Facile green synthesis of heteroatoms doped aegle marmelos-derived carbon quantum dots and its tuneable fluorescence characteristics influenced by solvent polarity[J]. Carbon Letters, 2024, 34(3): 1045-1054.
[30] CHAUDHARY M, SINGH P, SINGH G P, et al. Structural features of carbon dots and their agricultural potential[J]. ACS Omega, 2024, 9(4): 4166-4185.
[31] CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37): 11318-11319.
[32] LI X Y, WANG H Q, SHIMIZU Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chemical Communications, 2011, 47(3): 932-934.
[33] ZHAI X Y, ZHANG P, LIU C J, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64): 7955-7957.
[34] SAHU S, BEHERA B, MAITI T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70): 8835-8837.
[35] YANG Y H, CUI J H, ZHENG M T, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48(3): 380-382.
[36] HU B J, HUANG K, TANG B J, et al. Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution[J]. Nano-Micro Letters, 2023, 15(1): 217.
[37] HOU W D, GUO H Z, WU M H, et al. Amide covalent bonding engineering in heterojunction for efficient solar-driven CO2 reduction[J]. ACS Nano, 2023, 17(20): 20560-20569.
[38] CHEN H X, MO Z, WANG Z M, et al. Implanting nitrogen-doped graphene quantum dots on porous ultrathin carbon nitride for efficient metal-free photocatalytic hydrogen evolution[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109801.
[39] WANG R N, WANG Z, QIU Z Y, et al. Nanoscale 2D g-C3N4 decorating 3D hierarchical architecture LDH for artificial photosynthesis and mechanism insight[J]. Chemical Engineering Journal, 2022, 448: 137338.
[40] XU Y, HOU W D, HUANG K, et al. Engineering built-In electric field microenvironment of CQDs/g-C3N4 heterojunction for efficient photocatalytic CO2 reduction[J]. Advanced Science, 2024, 11(28): 2403607.
[41] ZHAO Q, ZHANG Z Z, YAN T, et al. Synergism of carbon quantum dots and Au nanoparticles with Bi2MoO6 for activity enhanced photocatalytic oxidative degradation of phenol[J]. RSC Advances, 2021, 11(46): 28674-28684.
[42] KAUR A, KAUR M, VYAS P. Abatement of microbes and organic pollutants using heterostructural nanocomposites of rice straw CQDs with substituted strontium ferrite[J]. Chemosphere, 2024, 359: 142310.
[43] CHAI H, ZHANG Z, SUN J, et al. Enhancing tetracycline degradation with biomass carbon quantum dot (CQDs)-modified magnetic heterojunction CeO2-Fe3O4 under visible light[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112338.
[44] CHEN M J, ZHAO L Y, SHI X J, et al. Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin[J]. Chinese Chemical Letters, 2024, 35(8): 109336.
[45] JUNG H, SAPNER V S, ADHIKARI A, et al. Recent progress on carbon quantum dots based photocatalysis[J]. Frontiers in Chemistry, 2022, 10: 881495.
[46] RANI U A, NG L Y, NG C Y, et al. Sustainable production of nitrogen-doped carbon quantum dots for photocatalytic degradation of methylene blue and malachite green[J]. Journal of Water Process Engineering, 2021, 40: 101816.
[47] XU Y L, WANG B Y, ZHANG M M, et al. Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia[J]. Advanced Materials, 2022, 34(19): e2200905.
[48] LI L, CHENG D L, ZOU G Q, et al. Carbon anode from carbon dots-regulated polypyrrole for enhanced potassium storage[J]. Journal of Alloys and Compounds, 2023, 958: 170481.
[49] TIAN Z H, QIN S H, YANG J K, et al. Fabrication of PVDF/TiO2@CQDs photocatalytic films by ink-jet printing for dye degradation under visible light[J]. Applied Surface Science, 2024, 661: 160078.
[50] LU S L, CHEN Z Z, TU H Y, et al. Multifunctional carbon quantum dots decorated self-healing hydrogel for highly effective treatment of superbug infected wounds[J]. Chemical Engineering Journal, 2024, 480: 148218.
[51] YOO D, JEONG S, JU H M, et al. Dual-ligand surface passivation enables monodisperse Ag2S colloidal quantum dots for efficient near-infrared photothermal therapy[J]. ACS Materials Letters, 2024, 6(1): 308-313.
[52] FENG T L, ZENG Q S, LU S Y, et al. Morphological and interfacial engineering of cobalt-based electrocatalysts by carbon dots for enhanced water splitting[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7047-7057.
[53] WANG N, ZHANG Y S, WEI D D, et al. Carbon quantum dots aqueous solution as electrolyte for H2O2 production based on photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2023, 11(8): 4162-4169.
[54] SCHWANNINGER R, NASHASHIBI S, YAREMA O, et al. Metamaterial engineering for superior HgTeCQDs photodetector performance[J]. Advanced Optical Materials, 2024, 12(17): 2303223.
[55] ZHU S, LI X H, FAN Q G, et al. A type-II CQDs regulating FeOOH decorated BiVO4 photoelectrode for highly efficient photoelectrochemical degradation of tetracycline[J]. Separation and Purification Technology, 2024, 351: 128132.
[56] PAN Y J, DONG Z B, QIN D M, et al. Constructing sequential type II heterojunction CQDs/Bi2S3/TiNbO photoanode with superior charge transfer capability toward stable photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16062-16074.
[57] LIU M X, YAZDANI N, YAREMA M, et al. Colloidal quantum dot electronics[J]. Nature Electronics, 2021, 4(8): 548-558.
[58] GARCÍA DE ARQUER F P, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots: technological progress and future challenges[J]. Science, 2021, 373(6555): eaaz8541.
[59] GAO F, WANG Y, LIU J Y, et al. Optical fiber antenna employing quantum dots as gas molecule receptors[J]. Sensors and Actuators B: Chemical, 2022, 367: 132036.
[60] LIU J Y, HU Z X, ZHANG Y Z, et al. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors[J]. Nano-Micro Letters, 2020, 12(1): 59.
[61] AZARGOSHASB T, ALINAVID H, YADOLLAHZADEH S, et al. Carbon quantum dot embedding silica–molecularly imprinted polymer coated optical fiber as ratiometric biosensors toward dopamine detection[J]. IEEE Sensors Journal, 2024, 24(4): 4510-4522.