王一帆1,许明德2*,王建军1,许伟伟1,张宏意1,田乐辰1,宋海涛2,凤孟龙2
1.中国石油大学(华东)新能源学院,山东 青岛 266580;2.中石化石油化工科学研究院有限公司14所,北京 100089
引用格式:
王一帆,王建军,许伟伟,等.非球形颗粒在烟气轮机叶片上沉积特性的数值研究[J].中国粉体技术,2025,31(3):1-19.
WANG Yifan,WANG Jianjun,XU Weiwei,et al.Numerical study on deposition characteristics of non-spherical particles on flue gas turbine blades[J].China Powder Science and Technology, 2025, 31(3): 1−19.
DOI:10.13732/j.issn.1008-5548.2025.03.017
收稿日期:2024-09-04,修回日期:2024-11-25,上线日期:2025-03-05。
基金项目:国家自然科学基金项目,编号:52476043;炼油工艺与催化剂国家工程研究中心(中石化石油化工科学研究院有限公司)开放基金课题资助项目。
第一作者简介:王一帆(2000—),男(满族),硕士生,研究方向为气固−气液、多相流动过程及旋流分离技术。E-mail:1150163431@qq.com。*为并列第一作者。
通信作者简介:王建军(1971—),男,副教授,博士,硕士生导师,研究方向为气固-气液、多相流动过程及旋流分离技术。E-mail:wangjj01@upc. edu. cn。
摘要:【目的】研究高温烟气中的催化剂颗粒在烟气轮机叶片绕流过程中的运动特性以及在叶片表面的沉积规律。【方法】采用数值模拟和实验的方法,探讨高温工况下非球形颗粒在烟气轮机叶片上的沉积过程中入口流量和入口颗粒质量浓度等因素对颗粒沉积的影响以及入口颗粒与沉积颗粒粒径分布范围的差异。【结果】得出不同入口风量、颗粒质量浓度影响下的颗粒沉积质量以及入口颗粒和沉积颗粒的粒度分布范围。【结论】随入口流量和颗粒质量浓度增大,颗粒在烟气轮机叶片上的沉积质量增多,沉积颗粒粒径分布范围与入口颗粒基本一致。
关键词:非球形颗粒;绕流;沉积;数值模拟
Abstract
Objective Flue gas turbine is a core piece of energy-saving equipment in catalytic cracking systems.However,fouling on turbine blade surfaces poses significant risks to operational safety.Therefore,it is essential to conduct research on the structural mechanism of flue gas turbines.Previous studies have primarily focused on analyzing the chemical composition of fouling samples.Limited studies on the factors influencing particle deposition have often relied on cold-state experiments,leading to relatively low credibility.Using Fluent commercial software and a high-temperature deposition experimental platform,the study analyzes the factors affecting deposition.
Methods Firstly,based on the critical stress model and the protrusion element model,this paper developed a user-defined function(UDF)to determine particle deposition on wall surfaces.The UDF was integrated into Fluent to simulate particle behavior under varying inlet air volumes and inlet particle concentrations.Secondly,high-temperature deposition experiments were conducted using an authentic flue gas turbine blade model and accurately calibrated installation angles.Experimental parameters were consistent with those in the numerical simulations,ensuring consistency and enabling validation of the simulation results.Thirdly,a laser particle size analyzer was used to compare the particle size distribution of inlet particles and deposited particles.
Results and Discussion Based on the UDF deposition model and high-temperature deposition experiments,the results were obtained.High-velocity zones were at the leading and trailing edges of the pressure surface of the flue gas turbine rotor blades.At the trailing edge of the pressure surface and the leading edge of the suction surface,the gas-phase velocity decreased sharply,causing inertial particle impact and potential blade erosion.When the gas phase reached the rotor blades, the flow area was reduced,causing an increase in velocity and a corresponding decrease in pressure.After passing through the rotor blades,the flow area expanded,causing the velocity to drop and the pressure to rise.This change formed a pressure gradient force that opposed the mainstream direction,leading to boundary layer separation and potential particle deposition.The pressure distribution around the rotor blades exhibited systematic variation,with the highest pressure occurring at the leading edge of the pressure surface and gradually decreasing as it moved away from the blade.Conversely,the lowest pressure occurred at the leading edge of the suction surface and gradually increased away from the blade.A small low-pressure zone existed at the leading edge of the suction surface,resulting in a steep pressure gradient that destabilized fluid flow.In the presence of particles, this flow instability exacerbated blade erosion,increased surface roughness, and intensified particle deposition.Changes in inlet flow rates impacted both the deposition area and mass of non-spherical particles.The deposition area on the pressure surface gradually contracted from the entire surface to the central region,with an increase in deposition mass. On the suction surface,the deposition
area expanded from the middle of the blade root towards the trailing edge,with the deposition mass also increasing as the flow rate rose.In contrast,variations in inlet particle concentration had minimal impact on the deposition area,but the deposition mass increased significantly with the increase in inlet particle concentration.Factors such as inlet flow rate, particle concentration,and particle shape had little effect on size distribution range of deposited particles.
Conclusion Higher inlet flow rates and particle mass concentrations result in greater particle deposition mass,while the size distribution of deposited particles remains unchanged.These findings provide a theoretical basis for studying the movement characteristics of catalyst particles in high-temperature flue gas,the interaction with blade surfaces,and deposition patterns.
Keywords: non-spherical particle; flow diversion; deposition; numerical simulation
参考文献(References)
[1]武文斌,苗海滨,任新广.烟气轮机的状态监测与故障诊断实例分析[J].石油化工设备,2010,39(2):74-77.
WU W B,MIAO H B,REN X G.Case analysis of condition monitoring and fault diagnosis of flue gas turbine[J].Petrochemical Equipment,2010,39(2):74-77.
[2]陈俊武.催化裂化工艺与工程[M].2版.北京:中国石化出版社,2005.
CHEN J W.Catalytic cracking process and engineering[M].2nd ed.Beijing:China Petrochemical Press,2005.
[3]李磊,刘晋,魏杰.重油催化烟机叶片结垢原因分析[J].通用机械,2018(6):45-48.
LI L,LIU J,WEI J.Analysis of the causes of scaling on the blades of heavy oil catalytic flue gas turbine[J].General Machinery,2018(6):45-48.
[4]陈洪岩,李琳琳.催化裂化装置烟机结垢原因浅析[J].当代化工研究,2016(11):107-108.
CHEN H Y,LI L L.Brief analysis of the causes of scaling in flue gas turbine of catalytic cracking unit[J].Contemporary Chemical Industry,2016(11):107-108.
[5]陈帅甫,王建军,金有海.烟气轮机内不同粒径颗粒运动规律的数值研究[J].中国粉体技术,2018,24(1):64-68.
CHEN S F,WANG J J,JIN Y H.Numerical study on the movement law of particles with different particle sizes in flue gas turbine[J].China Powder Science and Technology,2018,24(1):64-68.
[6]田华,张晴,谢祖锋,等.富油煤热解产物在粉砂介质中的吸附行为研究[J].环境科学学报,2022,42(9):133-140.
TIAN H,ZHANG Q,XIE Z F,et al.Study on adsorption behavior of oil-rich coal pyrolysis products in silt media[J].Acta Scientiae Circumstantiae,2022,42(9):133-140.
[7]潘静娜,王建军,陈帅甫,等.催化裂化烟气轮机内不同Stokes数颗粒沉积特性数值研究[J].石油学报(石油加工),2018,34(5):967-974.
PAN J N,WANG J J,CHEN S F,et al. Numerical study on deposition characteristics of particles with different Stokes numbers in catalytic cracking flue gas turbine[J].Acta Petrolei Sinica(Petroleum Processing Section),2018,34(5):967-974.
[8]蔡振岩,钱建清.碰撞时间的定量计算[J].大学物理,1983(12):14-17.
CAI Z Y,QIAN J Q.Quantitative calculation of collision time[J].College Physics,1983(12):14-17.
[9]赵庆国,廖晖,李绍芬.催化剂颗粒的力学性能与机械强度[J].高校化学工程学报,2000,14(2):164-169.
ZHAO Q G,LIAO H,LI S F.Mechanical properties and strength of catalyst particles[J].Journal of Chemical Engineering of Chinese Universities,2000,14(2):164-169.
[10]SOLTANI M,AHMADI G.On particle adhesion and removal mechanisms in turbulent flows[J].Journal of Adhesion Science and Technology,2012,8(7):763-785.
[11]SOLTANI M,AHMADI G.Detachment of rough particles with electrostatic attraction from surfaces in turbulent flows[J].Journal of Adhesion Science & Technology,1999,13(3):325-355.
[12]AHMADI G,GUO S G.Bumpy particle adhesion and removal in turbulent flows including electrostatic and capillary forces[J].The Journal of Adhesion,2007,83(3):289-311.
[13]GOLDASTEH I,AHMADI G,FERRO A.A model for removal of compact,rough,irregularly shaped particles from surfaces in turbulent flows[J].The Journal of Adhesion,2012,88(9):766-786.
[14]谭慧敏,王建军,金有海.催化裂化烟气轮机级叶栅内气固两相运动特性的数值研究[J].汽轮机技术,2012,54(6):437-441.
TAN H M,WANG J J,JIN Y H.Numerical study on gas-solid two-phase flow characteristics in the cascade of catalytic cracking flue gas turbine[J].Turbine Technology,2012,54(6):437-441.
[15]陈帅甫,郭颖,王建军,等.烟气轮机级内气固两相流场特性PIV实验[J].高校化学工程学报,2018,32(1):67-76.
CHEN S F,GUO Y,WANG J J,et al.PIV experiment on the characteristics of gas-solid two-phase flow field in the stage of flue gas turbine[J].Journal of Chemical Engineering of Chinese Universities,2018,32(1):67-76.
[16]JIANG Y B,MATSUOKA S,MASUDA H,et al.Characterizing the effect of substrate surface roughness on particle-wall interaction by the airflow method[C]//Chinese Society of Particuology.The Third Asian Particle Technology Symposlum Proceedings.Beijing:China Agricultural Science and Technology Press,2007:89-93.
[17]KESAVAN J,HUMPHREYS P,NASR B, et al. Experimental and computational study of reaerosolization of 1 to 5 μm PSL microspheres using jet impingement[J]. Aerosol Science & Technology, 2017, 51(3): 377-387.
[18]JEROME C,NADEGE B,PHILIPPE S.Adhesion and removal of particles from surfaces under humidity controlled air stream[J].The Journal of Adhesion,2001,75(3):351-368.
[19]GUO S G,ZHANG X Y.Particle adhesion and detachment in turbulent flows including capillary forces[J].Particulate Science and Technology,2008,25(1):59-76.
[20]LIU Z Y, LI Q P, FU J, et al. Data on the critical condition of silica and ice particles removal from surface[J].Data in Brief,2020,29:105363.
[21]ZHANG X Y.Effects of electrostatic and capillary forces and surface deformation on particle detachment in turbulent flows[J].Journal of Adhesion Science and Technology,2011,25(11):1175-1210.