洪若瑜, 马骏杰, 张 星, 何传峰, 马强强, 张 涛
福州大学 化工学院, 福建 福州 350108
引用格式:
洪若瑜,马骏杰,张星.氮化钛粉体制备和应用的进展[J].中国粉体技术,2025,31(3):1-15.
HONG Ruoyu,MA Junjie,ZHANG Xing.Progress in preparation and applications of titanium nitride powder[J].China Powder Science and Technology,2025,31(3):1−15.
DOI:10.13732/j.issn.1008-5548.2025.03.002
收稿日期:2024-08-31,修回日期:2024-11-15,上线日期: 2025-03-05。
基金项目:国家自然科学基金项目,编号: 22278080;中央引导地方科技发展专项,编号: 2017L3014;福建省闽江学者奖励计划项目,编号:闽入社批复[2016]149号;福建省战略性新兴产业研发基金项目,编号:82918001。
第一作者简介:洪若瑜(1966—),男,嘉熙学者特聘教授,博士,博士生导师,研究方向为材料的制备与应用。E-mail:rhong@fzu.edu.cn。
摘要:【目的】为了满足不同领域的需要,提升产品性能,对氮化钛的研究现状进行总结和思考。【研究现状】综述氮化钛的理化性质、制备方法,包括传统固相法(直接氮化法、碳热还原法、氨气还原法)、液相法(溶胶-凝胶法)和气相法(化学气相沉积法、等离子体法),阐述各制备方法的产品细度和形貌特点,分析其优缺点,总结氮化钛粉体材料的制备和应用进展。【结论与展望】对氮化钛粉体材料的制备和应用前景进行总结和展望,提出开发条件温和、工艺简单、产品纯净、粒径可控的制备方法,实现纳米级氮化钛材料的大规模制备。
关键词: 氮化钛; 纳米粉体;制备方法; 耐磨材料; 电极; 红外吸收
Abstract
Significance Titanium nitride(TiN)powder has the advantages of high hardness,excellent wear resistance,high thermal and chemical stability,and good electrical conductivity.These attributes enable a wide range of applications.For example,it can be used in wear-resistant coatings for metal or ceramic materials,improving their lifespan.Its good conductivity and chemical stability make it suitable for supercapacitors and battery electrodes.Its ability to absorb visible and near-infrared lightallows its use as the photothermal conversion material and infrared absorber.Its dielectric properties enable its applications in microwave electromagnetic wave absorption,and its chemical stability and low work functionmake it an effective coating material for sensors.Moreover,its plasmonic properties,which can replace precious metals,make it apromising electrocatalyst for hydrogen evolution reactions.This paper reviews the research progress on TiN to address its potentialin various fields.
Progress The physicochemical properties and preparation methods of TiN,including solid-phase(direct nitriding,carbothermal reduction,ammonia reduction),liquid phase(sol-gel)and gas-phase(chemical vapor deposition,plasma)are reviewed.Direct nitriding is easy to operate and offers high-quality and pure products with high energy efficiency,but requires costly raw materials,limiting its large-scale production.Compared todirect nitriding,carbothermal reduction method reducesnitriding temperatures but generates pollution and produceslower-purity products.Chemical vapor deposition produces compact,high-purity products but experienceshigh reaction temperatures,low production efficiency,and limited applications.Plasma methods can achieve lower reaction temperatures,high purity,and fine particlesizes,but still facechallenges such as high-voltage discharge requirements and technologicalimmaturity.The sol-gel method could produce materials with exceptional purity,fine particle sizes,high hardness,and thermal conductivity.However,the process is time-consuming,costly,and requires precise parametercontrol,with toxic organic solventsposing additional risks.
Conclusion and prospects The development of TiN preparation methods has progressed toward milder reaction conditions,higher product quality,and improved yields.However,challenges in scaling up production and realizing controllable conditions still persist.Therefore,research should focus more on developing simple,scalable,and cost-effective preparation methods to facilitate large-scale production of nanoscale TiN.TiN materials,with their high melting point,hardness,thermal and chemical stability,electrical conductivity,and superconductivity,are already widely used in coatings and biomedical materials. They also have broad application prospects in electrodes, photothermal conversion, infrared absorption, electromagnetic wave absorption,sensors,and electrocatalysts. Although great progress has been made,limitations remain in scalability and application-specific performance. Future efforts should focus on improving the synthesis mechanisms and morphology control of TiN,understanding the physical and chemical properties of pure and composite TiN nanomaterials,and enhancing the electrical and magnetic properties of the material through doping.TiN’s properties offer significant potential for the development of composite materials,and it can also be used as a carrier to extend the lifespan and enhance the performance of raw materials.
Keywords:titanium nitride;nano-powder;preparation method;wear-resistant material;electrode;infrared absorption
参考文献(References)
[1]PATSALAS P,KALFAGIANNIS N,KASSAVETIS S,et al.Conductive nitrides:growth principles,optical and electronic properties,and their perspectives in photonics and plasmonics[J].Materials Science & Engineering R,2018,123:1-55.
[2]YANG Z G,XU H M,SHUAI T Y,et al.Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis[J].Nanoscale,2023,15(28):11777-11800.
[3]FU Q Q,KOKALJ D,STANGIER D,et al.Aerosol synthesis of titanium nitride nanoparticles by direct current arc discharge method[J].Advanced Powder Technology,2020,31(9):4119-4128.
[4]FABRY C,ZIETZ C,BAUMANN A,et al. High wear resistance of femoral components coated with titanium nitride:a retrieval analysis[J].Knee Surgery,Sports Traumatology,Arthroscopy,2017,26(9):2630-2639.
[5]TANG S,CHENG Q,ZHAO J X,et al.Preparation of titanium nitride nanomaterials for electrode and application in energy storage[J].Results in Physics,2017,7:1198-1201.
[6]SANTECCHIA E,HAMOUDA A M S,MUSHARAVATI F,et al.Wear resistance investigation of titanium nitride-based coatings[J].Ceramics International,2015,41(9):10349-10379.
[7]XIE Y B,TIAN F.Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor[J].Materials Science & Engineering B,2016, 215:64-70.
[8]XU G J,ZHANG L X,GUO C W,et al.Manganese monoxide/titanium nitride composite as high performance anode material for rechargeable Li-ion batteries[J].Electrochimica Acta,2012,85:345-351.
[9]GAO H X,PENG W,CUI W L,et al.Ultraviolet to near infrared titanium nitride broadband plasmonic absorber[J].Optical Materials,2019,97:109377.
[10]ZHANG Y H,MENG H J,SHI Y P,et al.TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption[J].Composites Part B:Engineering,2020,193:108028.
[11]SINHA S,PAL T,KUMAR D,et al.Design,fabrication and characterization of TiN sensing film-based ISFET pH sensor[J].Materials Letters,2021,304:130556.
[12]THEERTHAGIRI J,LEE S J,MURTHY A P,et al. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction:a review[J].Current Opinion in Solid State and Materials Science,2020,24(1):100805.
[13]MASCARETTI L,MANCARELLA C,AFSHAR M,et al.Plasmonic titanium nitride nanomaterials prepared by physical vapor deposition methods[J].Nanotechnology,2023,34(50):502003.
[14]洪祥云.掺杂氮化钛粉体电磁特性及高温吸波性能[D].北京:北京工业大学,2016.
HONG X Y.Electromagnetic properties and high-temperature absorption properties of doped titanium nitride powder[D].Beijing:Beijing University of Technology,2016.
[15]CAROLE D,FRÉTY N,ETIENNE-CALAS S,et al. Microstructural and mechanical characterization of titanium nitride produced by S.H.S[J].Materials Science and Engineering:A,2006,419(1/2):365-371.
[16]邹芹,赵亮,李艳国,等. 含氧超细TiN 0.3 粉体与烧结体的制备及氧对其组织结构的影响研究[J].矿冶工程,2020,40(6):111-115.
ZOU Q,ZHAO L,LI Y G,et al.Preparation of oxygenated ultrafine TiN 0.3 powder and sintered matter and the effect of oxygen on its microstructure[J].Mining and Metallurgical Engineering,2020,40(6):111-115.
[17]KRISHNARAO R V,SUBRAHMANYAM J,YADAGIRI M.Formation of TiN whiskers through carbothermal reduction of TiO2[J].Journal of Materials Science,2002,37(8):1693-1699.
[18]WU K H,JIANG Y,JIAO S Q,et al.Preparations of titanium nitride,titanium carbonitride and titanium carbide via a two-step carbothermic reduction method[J].Journal of Solid State Chemistry,2019,277:793-803.
[19]QIN X,ZHANG J H,KE C M,et al.Preparation of TiN ultrafine powders from sol−gel by Fe-catalyzed carbothermal reduction nitridation[J].Inorganic Chemistry Communications,2023,148:110278.
[20]倪洁,魏恒勇,卜景龙 等.氨气还原氮化法制备有序介孔TiN粉体及其电化学性能[J].高等学校化学学报,2017,38(3):355-361.
NI J,WEI H Y,BU J L,et al.Preparation of ordered mesoporous TiN powder by ammonia reduction nitriding and its electrochemical properties[J].Chemical Journalof Chinese Universities,2017,38(3):355-361.
[21]WANG Y T,LIN Y C.Study on the performance of nano-titanium nitride-coated stainless steel electrodes in electro-fentonsystems[J].Nanomaterials,2018,8(7):494.
[22]SHI H M,ZHANG H,CHEN Z,et al.Synthesis of TiN nanostructures by Mg-assisted nitriding TiO2 in N2 for lithium ion storage[J].Chemical Engineering Journal,2018,336:12-19.
[23]桑元,向茂乔,宋淼,等.流化床化学气相沉积法制备近化学计量比的TiN粉体[J].化工学报,2020,71(6):2743-2751.
SANG Y,XIANG M Q,SONG M,et al.Preparation of near-stoichiometric TiN powder by fluidized bed chemical vapor deposition[J].CIESC Journal,2020,71(6):2743-2751.
[24]GHADAI R K,LOGESH K,ČEP R,et al.Influence of deposition time on titanium nitride(TiN)thin film coating synthesis using chemical vapour deposition[J].Materials,2023,16(13):4611.
[25]KRISHNA M,KUMAR S M.Synthesis of nanocrystalline titanium nitride by microwave plasma technique[J].SN Applied Sciences,2019,1(8):1-7.
[26]SAMOKHIN A V,SINAISKII V A,ALEKSEEV N V,et al. Production of titanium nitride nanopowder from titanium hydride based on synthesis in thermal plasma[J].Inorganic Materials: Applied Research,2014,5(3):224-229.
[27]BORA B,AOMOA N,KAKATI M,et al. Studies on a supersonic thermal plasma expansion process for synthesis of titanium nitride nanoparticles[J].Powder Technology,2013,246:413-418.
[28]KIRPICHEV D E,SINAISKIY M A,SAMOKHIN A V,et al.Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor[J].Journal of Physics:Conference Series,2017,825:012006.
[29]LIN L L,STAROSTIN S A,WANG Q,et al.An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles[J].Chemical Engineering Journal,2017,321:447-457.
[30]傅孟晗.氮化钛基纳米材料的制备及其光热性能研究[D].哈尔滨:哈尔滨工业大学,2019.
FU M H.Preparation of titanium nitride-based nanomaterials and their photothermal properties[D].Harbin:Harbin Institute of Technology,2019.
[31]SIK P Y,SATOSHI K,HIDETOSHI S.Preparation of metal nitride particles using arc discharge in liquid nitrogen[J].Nanomaterials,2021,11(9):2214.
[32]RASAKI S A,ZHANG B X,ANBALGAM K,et al.Synthesis and application of nano-structured metal nitrides and carbides:a review[J].Progress in Solid State Chemistry,2018,50:1-15.
[33]SAKKA S.Birth of the sol−gel method:early history[J].Journal of Sol−Gel Science and Technology,2021,102(3):478-481.
[34]BAYON N N,GUNASEKARAN N K,TUMKUR P P,et al.Synthesis and characterization of titanium nitride nanoparticles[J].Materials Express,2022,12(9):1211-1215.
[35]HONG X Y,WANG Q,TANG Z H,et al.Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping[J].The Journal of Physical Chemistry C,2015,120(1):148-156.
[36]GHASEMI S,SHANAGHI A, CHU P K. Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on
Al 7075 by high-vacuum magnetron sputtering[J]. Thin Solid Films, 2017, 638: 96-104.
[37]任旭辉,周梦林, 郑照县, 等. 3D打印钛合金Ti 6 Al 4 V喷涂氮化钛涂层与超高分子量聚乙烯磨损性能研究[J]. 中国
医学装备,2022,19(12):21-25.
REN X H,ZHOU M L,ZHENG Z X,et al.3D study on the wear properties of titanium nitride coating and ultra-high molecular weight polyethylene sprayed titanium alloy Ti6 Al4V[J].China Medical Equipment,2022,19(12):21-25.
[38]HUSSEIN M A,ANKAH N K, KUMAR A M,et al.Mechanical,biocorrosion,and antibacterial properties of nanocrystalline TiN coating for orthopedic applications[J].Ceramics International,2020,46(11):18573-18583.
[39]ADALATI R,SHARMA M,SHARMA S,et al. Metal nitrides as efficient electrode material for supercapacitors: a review
[J].Journal of Energy Storage,2022, 56: 105912.
[40]FAN H W,ZHANG S Y,ZHU X F.Nitrided TiO 2 nanoparticles/nanotube arrays for better electrochemical properties[J].Chemical Physics Letters,2019,730:340-344.
[41]倪洁,陈越军,吕东风,等.介孔氮化钛粉体还原氮化演变过程及电化学性能[J].稀有金属材料与工程,2021,50(12):4402-4409.
NI J,CHEN Y J,LYU D F, et al. Evolution process and electrochemical properties of reduced nitriding of mesoporous titanium nitride powder[J].Journal of Rare Metal Materials and Engineering,2021,50(12):4402-4409.
[42]ZHANG L Q,ZHU C X,YU S C,et al.Status and challenges facing representative anode materials for rechargeable lithium batteries[J].Journal of Energy Chemistry,2022,66:260-294.
[43]KELLER C,DESRUES A,KARUPPIAH S,et al.Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery[J].Nanomaterials,2021,11(2):307.
[44]ZHANG T,CHEN C D,BIAN X F,et al.Yolk-shell-structured Si@TiN nanoparticles for high-performance lithium-ion batteries[J].RSC Advances,2022,12(30): 19678-19685.
[45]KIM S J,PARK H C,KIM M C,et al.Sputtered amorphous thin film nanocomposites as an anode for lithium-ion batteries[J].Journal of Power Sources,2015,273:707-715.
[46]WANG H,CHEN S,LI Y,et al.Organosilicon-based functional electrolytes for high-performance lithium batteries[J].Advanced Energy Materials,2021,11(28):2101057.
[47]GAO C H,SUN K,HONG B,et al.Guided dendrite-free lithium deposition through titanium nitride additive in Li metal batteries[J].International Journal of Hydrogen Energy,2020,45(53):28294-28302.
[48]LIU R J,LI N,ZHAO E Y,et al.Facile molten salt synthesis of carbon-anchored TiN nanoparticles for durable high-rate lithium-ion battery anodes[J].Materials Futures,2022,1(4):134-142.
[49]ZHANG J,HU H,LIU X,et al.Development of the applications of titanium nitride in fuel cells[J].Materials Today Chemistry,2019,11:42-59.
[50]KWON J A,KIM M S,SHIN D Y,et al. First-principles understanding of durable titanium nitride(TiN)electrocatalyst supports[J].Journal of Industrial and Engineering Chemistry,2017,49:69-75.
[51]HUNG Y Y,LIU W S,CHEN Y C,et al.On the mesoporous TiN catalyst support for proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2020,45(27):14083-14092.
[52]MATSUI H,SHOJI A,CHEN C,et al.Local structures and robust oxygen reduction performances of TiN-supported bimetallic Pt-Cu electrocatalysts for fuel cells[J].Catalysis Science & Technology,2024,14(6):1501-1511.
[53]WANG L L,ZHU G H,WANG M,et al.Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion[J].Solar Energy,2019,184:240-248.
[54]LI Y,HUANG Z Q,XU Y F,et al.Scalable-manufactured plasmonic metamaterial with omnidirectional absorption band-width across visible to far-infrared[J].Advanced Functional Materials,2022,32(46):2207239.
[55]LUO Q Y,LIU Y,LIU H T,et al.Analysis of photothermal coupling of titanium nitride nanorods applied to near-infrared photothermal therapy[J].International Journal of Thermal Sciences,2024,201:109033.
[56]POPOV A,TIKHONOWSKI G,SHAKHOV P,et al.Synthesis of titanium nitride nanoparticles by pulsed laser ablation in different aqueous and organic solutions[J].Nanomaterials,2022,12(10):1672.
[57]BIN C J,JING Z,FAN W,et al.Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption[J].Carbon,2021,174:509-517.
[58]RAJESH K,SUMANTA S,EDNAN J,et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding[J].Carbon,2021,177:304-331.
[59]ZHANG Y,LI M Y,LI D,et al.TiN-based materials for multispectral electromagnetic wave absorption[J].Journal of Electronic Materials,2023,52(6):3549-3562.
[60]SHI Y,LI D,WEI Y,et al.Magnetic TiN composites for efficient microwave absorption: nanoribbons vs nanoparticles[J].Composites Communications,2021,28:100919.
[61]XU J,WU Q S,LU L L,et al.Preparation and properties of a super-hydrophobic,electromagnetic interference shielding titanium nitride film[J].Thin Solid Films,2023,783:140056.
[62]LI C P,LI D,ZHANG L,et al. Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature[J].Nano Research,2022,16(2):3570-3579.
[63]SHKONDIN E,REPÄN T,TAKAYAMA O,et al.High aspect ratio titanium nitride trench structures as plasmonic biosensor[J].Optical Materials Express,2017,7(11):4171-4182.
[64]NAIK G V,SHALAEV V M,BOLTASSEVA A.Alternative plasmonic materials:beyond gold and silver[J].Advanced materials,2013,25(24):3264-3294.
[65]TATHFIF I,RASHID K S,YASEER A A,et al.Alternative material titanium nitride based refractive index sensor embedded with defects:an emerging solution in sensing arena[J].Results in Physics,2021,29:104795.
[66]KAUR V,SINGH S.Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications[J].Optical Fiber Technology,2019,48:159-164.
[67]KHALIL A E,EL-SAEED A H,IBRAHIM M A,et al. Highly sensitive photonic crystal fiber biosensor based on titanium nitride[J].Optical and Quantum Electronics,2018,50(3):1-12.
[68]NGUYEN T,LISSORGUES G,TAKHEDMIT H,et al.Very accurate flexible pH microsensor based on nanoporous titanium nitride material for In vivo application[J].IEEE Sensors Journal,2023,23(22):27019-27030.
[69]YANG H,HU Y,HUANG D,et al.Efficient hydrogen and oxygen evolution electrocatalysis by cobalt and phosphorus dual-doped vanadium nitride nanowires[J].Materials Today Chemistry,2019,11:1-7.
[70]SHI J L,PU Z H,LIU Q,et al.Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values[J].Electrochimica Acta,2015,154:345-351.
[71]WEN W W,CAN L,LI Z D,et al.In-situ synthesis of coupled molybdenum carbide and molybdenum nitride as electro-catalyst for hydrogen evolution reaction[J].Journal of Alloys and Compounds,2019,792:230-239.
[72]HAN Y J,YUE X,JIN Y S,et al.Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst[J].Journal of Materials Chemistry A,2016,4(10):3673-3677.
[73]LIU D,YAN Z Q,ZENG P,et al.In situ grown TiN/N-TiO 2 composite for enhanced photocatalytic H 2 evolution activity[J].Frontiers in Energy,2021,15(3):721-731.
[74]WANG X,YANG X,PEI G,et al.Strong metal-support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride[J].Carbon Energy,2023,6(1):245-254.
[75]YU X,LIU X,ZHAO J Y,et al.Tuning intermediate-enriched microenvironment of Pt-loaded porous TiN nanorods for enhanced electrochemical ozone production and hydrogen evolution reaction[J].Chemical Engineering Science,2024,286:119652.