ISSN 1008-5548

CN 37-1316/TU

最新出版

减轻剂颗粒特征对低密度固井水泥石-套管界面胶结性能的影响

Influence of density reducer particle characteristics on bonding properties of low-density cement stone-casing interface


武治强1,张兴全1,辛富斌2,凌兴杰2,黄志强2

1.中海油研究总院有限责任公司,北京 100028;2.长江大学 石油工程学院,湖北 武汉 430100


引用格式:

武治强,张兴全,辛富斌,等.减轻剂颗粒特征对低密度固井水泥石-套管界面胶结性能的影响[J].中国粉体技术,2025,31(3):1-10.

WU Zhiqiang,ZHANG Xingquan,XIN Fubin,et al.Influence of density reducer particle characteristics on bonding properties of low-density cement stone-casing interface[J].China Powder Science and Technology,2025,31(3):1−10.

DOI:10.13732/j.issn.1008-5548.2025.03.014

收稿日期:2024-06-10,修回日期:2024-08-09,上线日期:2025-03-03。

基金项目:国家重点研发计划项目,编号:2022YFC2806504;国家自然科学基金项目,编号:52274026;中海油科技项目,编号:KJGG-2022-17-04、KJGG-2022-17-05。

第一作者简介:武治强(1985—),高级工程师,博士,研究方向海上钻完井技术。E-mail:wuzhq2@cnooc. com. cn。

通信作者简介:黄志强(1964—),教授,硕士,研究方向油气井工程与材料。E-mail:huangzq1356@163. com。


摘要:【目的】明晰不同减轻剂颗粒特征对海洋深水弱胶结地层低密度固井水泥石-套管固井界面胶结性能的影响。【方法】分析在水泥浆密度分别为1.50、1.70 g/cm3 条件下,硅灰、粉煤灰及空心玻璃微珠3种常用减轻剂对低密度固井水泥石力学强度、体积收缩率以及水泥石-套管界面胶结强度的影响规律,采用X射线衍射、扫描电镜、压汞仪等分析减轻剂颗粒特征对水泥浆性能与界面胶结性能的影响机制。【结果】相同密度条件下,相较于硅灰和粉煤灰,采用空心玻璃微珠配制低密度水泥浆所需的水灰比更低,使得空心玻璃微珠减重水泥石的力学性能、抗体积收缩能力以及界面胶结强度更为优异,粉煤灰减重水泥石的界面胶结强度最低。【结论】采用空心玻璃微珠作为减轻剂能够优化水泥石孔隙结构,抑制化学体积收缩,同时与水化产物紧密胶结,使其与套管粘接牢固,更有利于保障海洋深水弱胶结地层的固井界面胶结质量。

关键词: 弱胶结地层; 低密度固井水泥浆; 减轻剂; 抗压强度; 界面胶结性能


Abstract

Objective To reduce the liquid column pressure in cement slurry and prevent formation rupture and loss,low-density cement slurry      incorporating micro silicon,fly ash,and hollow glass microspheres is widely used in shallow deep-water cementing operations in the     South China Sea.Ensuring the quality of cementing and sealing under low temperatures and low-density conditions is a key technical issue in developing deep-water oil and gas resources in this region. However,there is a lack of in-depth research on the relationship between the particle characteristics of the density reducers and the cement stone-casing interface.

Methods The study tested micro silicon low-density cement slurry with densities of 1.70 and 1.50 g/cm3 ,fly ash low-density cement    slurry, hollow glass microspheres low-density cement slurry,and composite low-density cement slurry combining hollow glass microspheres with micro silicon and hollow glass microspheres with fly ash, both with densities of 1.50 g/cm3 . The compressive strength,volume     shrinkage rate,and cement stone-casing interface bonding strength were tested under the curing conditions of 15 ℃. The effects of different density reducers on the phase composition of the cement were analyzed using X-ray diffraction(XRD).The microstructure and        hydration product characteristics of the cement stone with different density reducers were observed using scanning electron microscopy (SEM). The porosity and pore size distribution of the cement stone were measured using mercury intrusion porosimetry(MIP).

Results and Discussion Cement stone using hollow glass microspheres as a density reducer exhibited the highest compressive and       interfacial bonding strengths.Both micro silicon cement and micro silicon-hollow glass microspheres cement demonstrated higher          compressive and interfacial bonding strengths compared to fly ash cement.After 7 days of curing,the compressive strength of the 1.70   g/cm3 hollow glass microspheres cement stone was 18.54 MPa,with an interfacial bonding strength 61.5% higher than that of the fly ash  cement stone. The compressive strength of 1. 50g /cm 3 hollow glass microspheres cement stone was 14.56 MPa,with an interfacial bonding strength 112.5% higher than that of fly ash cement stone.Volume shrinkage rate tests showed that the linear volume shrinkage rate of hollow glass microspheres cement stone was lower than that of the micro silicon and fly ash cement stones. At a density of 1.50 g/cm3 ,the linear volume shrinkage rates of the three types of low-density cement stones over 7 d were -0.05%,-0.1%,and -0.08%,respectively.XRD   analysis showed that the CH diffraction peak intensity of micro silicon cement stone was lower than that of other cement stones with the same density,indicating that micro silicon could further participate in secondary hydration reactions while adjusting to the cement      slurry density, consuming part of the CH and generating C-S-H gel,which enhanced interface bonding. SEM analysis showed that the microstructure of the low-density cement stone with hollow glass microspheres was the densest, with the microspheres closely cemented  with the hydration products,while the microstructure of the fly ash low-density cement was the loosest.Micro silicon could optimize the pore structure through pozzolanic and filling effects. At densities of 1.70 g/cm3 and 1.50 g/cm3 ,pores smaller than 20 nm accounted for

55.6% and 49.6% of the total,which were higher than 52.1% and 48.3% observed in fly ash cement stones.

Conclusion Hollow glass microspheres with low density demonstrate excellent weight reduction capacities,enabling a significant        decrease in the water-cement mass ratio of the cement slurry,reducing free water content in pores, optimizing the pore structure of the cement stone,and inhibiting shrinkage. This improves both the compressive and interfacial bonding strengths of the cement stone. Micro  silicon optimizes the pore structure through pozzolanic effect and filling effects,thereby improving the interfacial bonding strength   of low-density cement. Conversely,the weaker pozzolanic activity and filling effect of fly ash lead to the lowest interfacial bonding  strength for low-density fly ash cement.

Keywords:weakly consolidated formation; low-density cement slurry;density reducer;compressive strength;interface bonding properties


参考文献(References)

[1]周守为, 李清平. 开发海洋能源, 建设海洋强国[J]. 科技导报, 2020, 38(14): 17-26.

ZHOU S W, LI Q P. Developing marine energy and building a marine power [J]. Science and Technology Review, 2019,38(14): 17-26.

[2]孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J].石油钻探技术,2015,43(4):1-7.

SUN B J,ZHANG Z N.Challenges and countermeasures for the drilling and completion of deepwater wells in the south china Sea[J].Petroleum Drilling Techniques,2015,43(4):1-7.

[3]王成文,王瑞和,卜继勇,等.深水固井面临的挑战和解决方法[J].钻采工艺,2006(3):11-14,121.

WANG C W,WANG R H,BU J Y,et al. Problems existent in deepwater and its solution[J].Drilling & Production Technology,2006(3):11-14,121.

[4]罗宇维,肖伟,赵军.“十三五”中国海油固井技术研究进展与发展建议[J].中国海上油气,2020,32(5):145-151.

LUO Y W,XIAO W,ZHAO J.Research progresses and development suggestions of CNOOC cementing technology during the“13th Five-Year Plan”[J].China Offshore Oil and Gas,2020,32(5):145-151.

[5]王瑞和,王成文,步玉环,等. 深水固井技术研究进展[J].中国石油大学学报(自然科学版),2008(1):77-81.

WANG R H,WANG C W,BU Y H,et al.Research development of deepwater cementing technique[J].Journal of China University of Petroleum(Edition of Natural Science),2008(1):77-81.

[6]步玉环,杜嘉培,柳华杰,等.深水弱胶结地层固井强度梯度层理论与固化材料性能[J].中国石油大学学报(自然科学版),2021,45(4):74-83.

BU Y H,DU J P,LIU H J,et al.Theory of strength gradient layer in deepwater weakly consolidated formation and performance of cementing materials[J].Journal of China University of Petroleum (Edition of Natural Science),2021,45(4):74-83.

[7]陈国明,朱高庚,朱渊.深水油气开采安全风险评估与管控研究进展[J].中国石油大学学报(自然科学版),2019,43(5):136-146.

CHEN G M,ZHU G G,ZHU Y.Advances in safety assessment and risk management for deepwater oil and gas exploitation[J].Journal of China  University of Petroleum (Edition of Natural Science),2019,43(5):136-145.

[8]张清玉,邹建龙,朱海金.国外深水固井水泥浆技术进展[J].油田化学,2007,24(2):175-178.

ZHANG Q Y,ZOU J L,ZHU H J.Advances in deep water cementing technology [J].Oilfield Chemistry,2007,24(2):175-178.

[9]卢海川,王琼,郭秋实,等.国内外固井低密度水泥浆体系研究综述[J]. 精细石油化工进展,2020,21(4):13-17.

LU H C,WANG Q,GUO Q S,et al.Overview of domestic and foreign low density cement slurry systems for well cementing[J].Progress in    Fine Petrochemicals, 2020, 21(4): 13-17.

[10]ANYA A.Lightweight and ultra-lightweight cements for well cementing-a review[C]//SPE Western Regional Meeting,California,USA, 2018: SPE 190079-MS.

[11]肖京男,刘建,桑来玉,等.充气泡沫水泥浆固井技术在焦页9井的应用[J].断块油气田,2016,23(6):835-837.

XIAO J N,LIU J,SANG L Y,et al. Application of foamed cement slurry to Jiaoye-9 well [J].Fault Block Oil & Gas Field,2016,23(6):835-837.

[12]韩卫华.漂珠对低密度水泥浆密度的影响[J].钻井液与完井液,2004(5):58-59,75.

HAN W H.Influence of microsphere on the density of light-weight cement slurry[J].Drilling Fluid and Completion Fluids,2004(5):58-59, 75.

[13]张国华.微硅低密度水泥浆的应用[J].石油钻采工艺,1993(1):37-40.

ZHANG G H.Micro silicon low density cement slurry applications[J].Oil Drilling Technology,1993(1):37-40.

[14]熊敏,马春旭,侯亚伟,等.高性能微珠表面性质及其对水泥浆性能的影响[J].钻井液与完井液,2018,35(5):98-102.

XIONG M,MA C X,HOU Y W,et al.Surface properties of high-performance microbeads and their effects on the performance of cement slurry[J].Drilling Fluid and Completion Fluids,2018,35(5):98-102.

[15]杨广国,穆海鹏,高元,等.活化粉煤灰低密度水泥浆体系研究及应用[J].科学技术与工程,2014,14(17):193-196.

YANG G G,MU H P,GAO Y,et al. Research and application of low-density slurry with activated fly ash[J].Science Technology and Engineering,2014,14(17):193-196.

[16]李东山,冯威,刘忠华,等.漂珠-微硅复合低密度水泥浆体系在苏丹1-2-4区块应用中的抗压强度与密度和温度之间的相关性研究[J].内蒙古石油化工,2010,36(20):142-144.

LI D S,FENG W,LIU Z H,et al.The study of the correlation between the compressive strength and densityand temperature of the low       density and high strength cement slurry system[J].Inner Mongolia Petrochemical Industry, 2010, 36(20):142-144.

[17]曾建国,孙富全,高永会,等.高温高性能低密度水泥浆的室内研究[J].钻井液与完井液,2011,28(3):47-49,94-95.

ZENG J G,SUN F Q,GAO Y H,et al.Laboratory study of high-temperature resistance and high-performance low-density cement slurry[J].   Drilling Fluid and Completion Fluids,2011,28(3):47-49,94-95.

[18]夏元博,刘爱萍.套管试压对固井第一界面水力密封失效的影响[J].钻井液与完井液,2011,28(B11):4-6.

XIA Y B,LIU A P.Research on effect of casing pressure test to cement-casing interface hydraulic sealing property[J].Drilling Fluid and Completion Fluids,2011,28(B11):4-6.

[19]黄熠,陈浩东,郑浩鹏,等.套管偏心对压裂井水泥环力学完整性的影响研究[J].中国海上油气,2022,34(6):135-141.

HUANG Y,CHEN H D,ZHENG H P,et al. Influence of casing eccentricity on mechanical integrity of cement sheath in fractured wells[J].China Offshore Oil and Gas,2022,34(6):135-141.

[20]李早元,柳洪华,郭小阳,等.套管表面润湿性对固井界面胶结强度的影响[J].油田化学,2016,33(1):20-24.

LI Z Y,LIU H H,GUO X Y,et al. Effects of casing surface wetting on interfacial bonding strength of cement[J].Oilfield Chemistry,2016,33(1):20-24.

[21]刘俊君,卞江,冯彬,等.粗糙套管提高煤层气固井胶结强度实验研究[J].辽宁化工,2020 49(10):1198-1200.

LIU J J,BIAN J,FENG B,et al. Experimental research on improving cementing strength of coalbed methane well with rough casing pipe[J].Liaoning Chemical Industry,2020,49(10):1198-1200.

[22]张佩. 粉煤灰活性激发及其机理研究[D].石家庄:石家庄铁道大学,2018.

ZHANG P.Study on the activation of fly ash and its mechanism[D].Shijiazhuang :Shijiazhuang Railway University,2018.

[23]张涛,朱成.水泥-硅灰/粉煤灰体系强度,收缩性能与微观结构研究[J].硅酸盐通报,2022,41(3):903-912.

ZHANG T,ZHU C.Strength,shrinkage performance and microstructure of cement-silica fume/fly ash system[J].Chinese Journal of Ceramics,2022,41(3):903-912.

[24]丁庆军,韩冀豫,黄修林,等.微珠与硅灰、粉煤灰水化活性的对比研究[J].武汉理工大学学报,2011,33(3):54-57, 115.

DING Q J,HAN J Y,HUANG X L,et al. Research on hydration reactivity of microsphere compared with silica fume and fly ash[J].Journal  of Wuhan University of Technology, 2011, 33(3):54-57,115.

[25]黄新,袁润章,龙世宗,等.水泥粒径分布对水泥石孔结构与强度的影响[J].硅酸盐学报,2004(7):888-891.

HUANG X,YUAN R Z,LONG S Z,et al.Influence of cement particle size distribution on pore structure and strength of cement paste[J].Journal of the Chinese Ceramic Society,2004(7):888-891.