ISSN 1008-5548

CN 37-1316/TU

最新出版

壳聚糖复合微球制备及在水处理中的应用进展

Preparation and applications of chitosan composite microspheres in water treatment


任小花1,蒋茜茜1,董迎迎1,张金营2

1.济南大学 水利与环境学院,山东 济南 250022;2.山东省国土测绘院,山东 济南 250102


引用格式:

任小花,蒋茜茜,董迎迎,等.壳聚糖复合微球制备及在水处理中的应用进展[J].中国粉体技术,2025,31(3):1-14.

REN Xiaohua,JIANG Xixi,DONG Yingying,et al.Preparation and applications of chitosan composite microspheres in water treatment[J].China Powder Science and Technology,2025,31(3):1−14.

DOI:10.13732/j.issn.1008-5548.2025.03.012

收稿日期: 2024-04-22, 修回日期: 2024-07-21, 上线日期: 2025-03-03。

基金项目: 国家自然科学基金项目,编号:51908242。

第一作者简介: 任小花(1986—),女,副教授,博士,研究方向为碳纳米材料制备及在水处理中的应用。E-mail : stu_renxh@ujn. edu. cn。


摘要:【目的】为了探索以壳聚糖为原料的微球产品在水处理领域的应用前景。【研究现状】系统综述壳聚糖复合微球的传统及改性制备方法,并分析每种方法的优缺点及应用领域; 总结壳聚糖复合微球的分类及应用; 着重论述壳聚糖复合微球在重金属废水、有机废水和放射性废水处理等方面的应用进展。【结论与展望】随着科学技术的不断进步,壳聚糖复合微球的制备工艺将得到进一步优化,并通过调控复合微球的结构,使其具有更好的吸附性能和絮凝效果,开展壳聚糖复合微球在水处理领域的实际应用研究,有助于降低处理成本,提高水质。

关键词: 壳聚糖微球; 制备方法; 复合微球分类; 水处理应用; 有机废水

Abstract

Significance Water is an invaluable resource essential for daily life and industrial activities. However,rapid industrialization has led to increased discharge of agricultural,domestic,and industrial wastewater,resulting in serious water pollution that directly threatens human health. Chitosan (CS),a natural polymer flocculant,is recognized for its safety,non-toxicity,outstanding biocompatibility,biodegradability,adsorption and film-forming properties,and hydrophilicity. These characteristics have attracted widespread attention in the fields of food,medicine,cosmetics,and environmental protection.Moreover,chitosan molecular chains,rich in amino and hydroxyl groups,offer good modification and reactivity,making chitosan a commonly used precursor for the preparation of composite microspheres used in water treatment to remove various pollutants.

Progress The study reviews recent literature on chitosan composite microspheres and their applications in water treatment.It summarizes the preparation methods,classification,and potential applications in treating heavy metal,organic,and radioactive wastewater.Traditional preparation methods for chitosan composite microspheres include emulsion cross-linking,spray drying,coagulation,and ionic gelation.However,these methods often result in products with low mechanical strength and limited application scope.To address these issues,researchers have optimized and modified chitosan using techniques such as carboxylation,acylation,alkylation,cross-linking,and graft modification,which greatly improve the mechanical strength and broaden the application scope of these microspheres. In heavy metal wastewater treatment, chitosan composite microspheres exhibit strong adsorption capacity for heavy metalions,effectively reducing their concentrations in wastewater while ensuring minimal environmental impact due to their biocompatibility. For organic wastewater,these microspheres effectively remove organic pollutants and can be used to prepare high-efficiency filtration membranes for advanced treatment as a result of their high specific surface area and porosity. In radioactive wastewater treatment,chitosan composite microspheres demonstrate strong adsorption capacity for radionuclides, making them suitable for the preparation of radioactive wastewater treatment and disposal materials owing to their excellent biocompatibility.

Conclusions and Prospects Chitosan composite microspheres hold great potential in water treatment but still face major challenges in developing economic, efficient, and environmentally-friendly preparation methods, as well as in understanding the mechanisms for pollutant removal. Future studies should focus on optimizing preparation methods, regulating the micro and macro structures of these microspheres, and exploring the mechanisms for pollutant removal. Such efforts will improve the practical application of chitosan composite microspheres in water treatment, leading to significant breakthroughs and development.

Keywords: chitosan microsphere; preparation method; composite microsphere classification; water treatment application;organic wastewater


参考文献(References)

[1]朱明新, 张进雨, 潘顺龙, 等. 磁性壳聚糖微球在有机废水处置领域的应用研究[J]. 化学试剂, 2022, 44(11): 1634-1641.

ZHU M X, ZHANG J Y, PAN S L, et al. Application research of magnetic chitosan microspheres in the field of organic wastewater disposal [J]. Chemical Reagents, 2022, 44(11): 1634-1641.

[2]WANG J, ZHUANG S. Chitosan-based materials: preparation, modification and application [J]. Journal of Cleaner Production, 2022, 355: 131825.

[3]罗华丽, 王琳玲. 壳聚糖微球在环境修复中的应用研究进展[J]. 环境科学与技术, 2021, 44(12): 23-29.

LUO H L, WANG L L. Application of chitosan microsphere in environmental remediation[J]. Environmental Science &

Technology, 2021, 44(12): 23-29.

[4]JAC D, RSDL A, IKA B,et al. Preparation of chitosan microspheres as carrier material to controlled release of urea fertilizer[J]. South African Journal of Chemical Engineering, 2021, 38: 70-77.

[5]ZHANG K, XU Y, LU L,et al. Hydrodynamic cavitation: a feasible approach to intensify the emulsion cross-linking process for chitosan nanoparticle synthesis [J]. Ultrasonics Sonochemistry, 2021, 74(2): 105551.

[6]DIAZ A G, QUINTEROS D A, LLABOT J M,et al. Spray dried microspheres based on chitosan: a promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis [J]. Mater Sci Eng C Mater Biol Appl, 2016, 62: 489-496.

[7]吴迪, 齐同珍, 刘辉, 等. 星点设计-效应面法优化O-羧甲基壳聚糖复凝海绵对凝血酶的固定化作用 [J]. 中国药学杂志, 2014, 49(2): 138-142.

WU D, QI T Z, LIU H, et al. Optimization of immoblized effect of the o-carboxymethyl chitosan multi-hemostatic sponge on thrombin by the central composite design-response surface methodology [J]. Chinese Pharmaceutical Journal, 2014, 49(2):138-142.

[8]TAGHIZADEH R K, AMIR A. Cross-linked chitosan in nano and bead scales as drug carriers for betamethasone and tetracycline[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2019, 131: 581-588.

[9]辛梅华, 李明春, 张兴松, 等. 新型烷基化壳聚糖微球的制备及其吸附性能 [J]. 材料研究学报, 2008, 22(5): 545-549.

XIN H M, LI M C, ZHANG X S, et al. Preparation and adsorption character of the novel alkylated chitosan microspheres [J]. Chinese Journal of Materials Research, 2008, 22(5): 545-549.

[10]张兴松, 李明春, 辛梅华, 等. 羧化改性壳聚糖微球的制备及吸附硝基酚的性能[J]. 化工进展, 2007, 26(11): 1654-1658.

ZHANG X S, LI M C, XIN H M, et al. Preparation of modified chitosan microspheres and adsorption for dinitrophenol [J]. Chemical Industry and Engineering Progress, 2007, 26(11): 1654-1658.

[11]孙林静, 毕韶丹, 韩兴威. 纤维素/壳聚糖复合微球的制备及对铜(Ⅱ)的吸附性能研究[J]. 电镀与精饰, 2022, 44(5):21-27.

SUN L J, BI S D, HAN X W. Preparation of cellulose/chitosan composite cicrospheres and its adsorption properties for copper(Ⅱ)[J]. Plating and Finishing, 2022, 44(5): 21-27.

[12]宣雅妮, 唐凡, 吕伟, 等. 壳聚糖/丙烯酰胺微球的制备及性能研究[J]. 应用化工, 2022, 51(9): 2527-2531.

XUAN Y N, TANG F, LV W, et al. Preparation and properties of chitosan/acrylamide microspheres[J]. Applied Chemical Industry, 2022, 51(9): 2527-2531.

[13]赵世鹏, 冯宗财, 袁爽, 等. 乙二胺丙酰化交联壳聚糖微球对甲基橙的吸附性能[J]. 化工学报, 2017, 68(3): 1253-1261.

ZAHO S P, FENG Z C, YUAN S, et al. Adsorption performance of ethylenediamine propionyl crosslinked chitosan microspheres to methyl orange[J]. CIESC Journal, 2017, 68(3): 1253-1261.

[14]李沁园, 谢鑫, 贾露凡, 等. 改性海藻酸钙-壳聚糖微球包膜缓释肥的制备及性能研究[J]. 化工新型材料, 2022,50(7): 250-255.

LI Q Y, XIE X, JIA L F, et al. Preparation and property of modified U@s-Alg-CS microspheres coated sustained-release fertilizer [J]. New Chemical Materials, 2022, 50(7): 250-255.

[15]梁远远. 改性壳聚糖的制备及其在废水处理中的应用研究[D]. 合肥: 合肥学院, 2020.

LIANG Y Y. Study on the preparation of modified chitosan and its application in wastewater treatment [D]. Hefei:Hefei University, 2020.

[16]YU S Y, CUI J L, JIANG H,et al. Facile fabrication of functional chitosan microspheres and study on their effective cationic/anionic dyes removal from aqueous solution [J]. International Journal of Biological Macromolecules, 2019,134:830-837.

[17]GOU L Y, LU H Q, RACKEMANN D,et al. Quaternary ammonium-functionalized magnetic chitosan microspheres as an

effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs)[J]. Chemical Engineering Journal, 2021, 416: 129084.

[18]ZHAO B, SUN X, WANG L, et al. Adsorption of methyl orange from aqueous solution by composite magnetic micro⁃

spheres of chitosan and quaternary ammonium chitosan derivative [J]. Chinese Journal of Chemical Engineering, 2019,27(8): 1973-1980.

[19]POORESMAEIL M, NAMAZI H. Chitosan coated Fe3O4@Cd-MOF microspheres as an effective adsorbent for the removal of the amoxicillin from aqueous solution [J]. International Journal of Biological Macromolecules, 2021, 191: 108-117.

[20]李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能 [J]. 材料导报, 2020, 34(增刊1):

535-538.

LI M M, ZHAN S P, GONG L. Preparation of chitosan/gelatin composite microspheres and their adsorption properties for chrome(Ⅵ) [J]. Materials Reports, 2020, 34(S1): 535-538.

[21]LI J, JIANG Q, SUN L, et al. Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8 [J]. Separation and Purification Technology, 2024, 328: 124969.

[22]WANG S S, YANG Y L, CHEN H Q, et al. Preparing high-performance microspheres based on the chitosan-assisted dispersion of reduced graphene oxide in aqueous solution for bilirubin removal [J]. Journal of Chromatography A, 2024,1722: 464884.

[23]WANG Z Y, LV Z K, SU Q Y, et al. Polyethylene glycol crosslinked modified chitosan/halloysite nanotube composite aerogel microspheres for efficient adsorption of melanoidin [J]. International Journal of Biological Macromolecules, 2024,266: 131013.

[24]李莎, 张新浩, 贾睿, 等. 聚吡咯/壳聚糖-海藻酸钠复合微球的制备及其药物缓释性能 [J/OL]. 复合材料学报: 1-8

[2024-05-27]. https://doi. org/10. 13801/j. cnki. fhclxb. 20231123. 001.

LI S, ZHANG X H, JIA R, et al. Preparation of polypyrrole/chitosan-sodium alginate composite microspheres and their slow-release properties [J/OL]. Acta Materiae Compositae Sinica, 1-8[2024-05-27]. https://doi. org/10. 13801/j. cnki. fhclxb. 20231123. 001.

[25]郭龙, 冯凌竹, 李爽, 等. 壳聚糖-秸秆复合微球的制备及其吸附特性 [J]. 化学工程师, 2022, 36(9): 17-20.

GUO L, FENG L Z, LI S, et al. Preparation and adsorption properties of chitosan-straw composite microspheres[J]. Chemical Engineer, 2022, 36(9): 17-20.

[26]梁松, 唐玉霖, 王祎龙, 等. 磁性高分子复合微球去除重金属的研究进展[J]. 水处理技术, 2012, 38(10): 8-11.

LIANG S, TANG Y L, YU Y L, et al. Research progress on removal of heavy metals by magnetic polymer composite microspheres [J]. Technology of Water Treatment, 2012, 38(10): 8-11.

[27]林宗坤, 杨玉如, 张爱萍. 壳聚糖基复合物理水凝胶的制备及其重金属吸附性能[J]. 化工新型材料, 2022, 50(7):

204-209.

LIN Z S, YANG Y R, ZHANG A P. Preparation of chitosan based composite physical hydrogels and their heavy metal adsorption properties [J]. New Chemical Materials, 2022, 50(7): 204-209.

[28]傅明连, 高果, 韩煜,等 . 磁性交联壳聚糖微球对 Cu2+ 的吸附性能研究 [J]. 化学研究与应用, 2020, 32(4):664-670.

FU L M, GAO G, HAN Y, et al. Adsorption properties of magnetic cross-linked chitosan microspheres to Cu2+[J]. Chemical Research and Application, 2020, 32(4): 664-670.

[29]周春于, 杨俊玲, 于振东. 纳米Fe3O4 @壳聚糖材料的制备及吸附性能的研究 [J]. 化学通报, 2018, 81(10): 914-918, 923.

ZHOU C Y, YANG J L, YU Z D. Preparation and adsorption properties of nano-Fe3O4 @chitosan [J]. Chemistry, 2018,81(10): 914-918, 923.

[30]HAN S Q, ZHOU X L, XIE H H, et al. Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution [J]. Chemosphere, 2022, 305: 135486.

[31]QIANG T T, QIU B Q, CHEN L, et al. Carboxylated chitosan modified alkalization of 2D MXene Ti3C2 and its Cr(VI)removal performance in aqueous solution [J]. Ceramics International, 2023, 49(4): 6688-6698.

[32]CHEN L Y, TANG J L, WU S Q,et al. Selective removal of Au(III) from wastewater by pyridine-modified chitosan [J]. Carbohydrate Polymers, 2022, 286: 119307.

[33]LI W K, WEI H L, LIU Y H,et al. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application [J]. Chemical Engineering and Processing-Process Intensification,2021, 168: 108548.

[34]ZHANG C, LIU S Y, LI S X, et al. Enahanced biosorption of Cu(II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123813.

[35]高爱莎, 匡少平. 天冬氨酸改性磁性壳聚糖对Cd2+的吸附作用研究 [J]. 化工新型材料, 2021: 49(6): 210-214.

GAO A S,KUNAG S P. Adsorption of Cd2+ by aspartic acid modified magnetic chitosan [J]. New Chemical Materials,2021:49(6): 210-214.

[36]赵超然. 载铁氧化石墨烯/壳聚糖的制备及其对水体中砷、 铬的去除[D]. 桂林: 桂林理工大学, 2020.

ZHAO C R. Preparation of iron-loaded graphene oxide/chitosan and its adsorption of arsenic and chromium in water [D]. Guilin: Guilin University of Technology, 2020.

[37]张伟彬. 改性壳聚糖微球处理含氟废水的研究 [J]. 电镀与环保, 2020, 40(2): 74-76.

ZHANG W B. Study on treatment of fluorine-containing wastewater by modified chitosan microspheres [J]. Electroplating & Pollution Control, 2020, 40(2): 74-76.

[38]林晓宇. 壳聚糖微球及胶囊对水溶液中砷、铬的吸附研究 [D]. 武汉: 中南民族大学, 2019.

LIN X Y. Study adsorption of As (Ⅲ) and Cr (Ⅵ) by chitosan microspheres or capsules [D]. Wuhan: Central South University for Nationalities, 2019.

[39]LI X, ZENG D L, HE Z Y, et al. Magnetic chitosan microspheres: an efficient and recyclable adsorbent for the removal of iodide from simulated nuclear wastewater [J]. Carbohydrate Polymers, 2022, 276: 118729.

[40]WANG S Y, LU Y Q, LIANG X X, et al. Fabrication of chitosan-based MCS/ZnO@Alg gel microspheres for efficient adsorption of As (V) [J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2019,139: 886-895.

[41]LOBO C, CASTELLARI J, LERNER J C,et al. Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water [J]. International Journal of Biological Macromolecules, 2020, 164(2): 1575-1583.

[42]贤凤, 程婉婷, 高静 . 离子液体包水微乳体系制备壳聚糖纳米微球及吸附水中氟离子的研究 [J]. 现代化工,2022, 42(6): 129-134.

XIAN F, CHENG W T, GAO J. Preparation of chitosan nanospheres by water in ionic liquid microemulsion system and their adsorption to fluoride ion inwater [J]. Modern Chemical Industry, 2022, 42(6): 129-134.

[43]曾春芽. 氧化石墨烯/壳聚糖改性材料的制备及其对水中As (Ⅲ)的去除 [D]. 桂林: 桂林理工大学, 2022.

ZENG C Y. Preparation of graphene oxide/chitosan modified materials and its removal of As (Ⅲ) from water [D]. Guilin:Guilin University of Technology, 2022.

[44]LONG X J, WANG T N, HE M C. Simultaneous removal of antimony and arsenic by nano-TiO2 -crosslinked chitosan (TA-chitosan) beads [J]. Environmental Technology, 2023, 44(19): 2913-2923.

[45]LI H X, JI H B, CUI X L,et al. Kinetics, thermodynamics, and equilibrium of As(Ⅲ),Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ)adsorption using porous chitosan bead-supported MnFe 2 O 4 nanoparticles [J]. International Journal of Mining Science and Technology, 2021, 31(6): 1107-1115.

[46]JEYASEELAN A, MEZNI A, VISWANATHAN N. Facile hydrothermal fabrication of functionalized multi-layer graphene

oxide encapsulated chitosan beads for enriched fluoride adsorption [J]. Journal of Applied Polymer Science, 2021, 139(9):51703.

[47]BIAN J M, WANG A W, SUN Y,et al. Adsorption of nitrate from water by core-shell chitosan wrinkled microspheres@LDH composite: electrostatic interaction, hydrogen bonding and surface complexation [J]. Applied Clay Science, 2022,225: 106550.

[48]聂海瑜,沈甘霓,杜凤沛,等. 碳纳米管对水体污染物吸附的研究进展 [J]. 西南民族大学学报(自然科学版),2015, 41(3): 326-330.

NIE H Y, SHEN G N, DU F P,et al. Research progress adsorption of contaminates from water by carbon nanotubes[J]. Journal of Southwest University for Nationalities (Natural Science Edition), 2015, 41(3): 326-330.

[49]YANG S, WANG Y, LI H,et al. Synthesis of nano-ZIF-8@chitosan microspheres and its rapid removal of p-hydroxybenzoic acid from the agro-industry and preservatives [J]. Journal of Porous Materials, 2021, 28(1): 1380-2224.

[50]EDIATI R, AULIA W, NIKMATIN B A,et al. Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution [J]. Materials Today Chemistry, 2021, 21: 100533.

[51]XU B C, ZHENG H L, WANG Y J,et al. Poly(2-acrylamido-2-methylpropane sulfonic acid) grafted magnetic chitosan microspheres: preparation, characterization and dye adsorption [J]. International Journal of Biological Macromolecules:Structure, Function and Interactions, 2018, 112: 648-655.

[52]TANG X H, HUANG Y Y, HE Q, et al. Adsorption of tetracycline antibiotics by nitrilotriacetic acid modified magnetic chitosan-based microspheres from aqueous solutions [J]. Environmental Technology & Innovation, 2021, 24: 101895.

[53]HE J, LI C W, CHENG X J. Water soluble chitosan-amino acid-BODIPY fluorescent probes for selective and sensitive detection of Hg2+ /Hg+ ions [J]. Materials Chemistry and Physics, 2023, 295: 127081.

[54]HUANG L Y,LI W, DU N,et al. Preparation of quaternary ammonium magnetic chitosan microspheres and their application for congo red adsorption [J]. Carbohydrate Polymers, 2022, 297: 119995.

[55]曾夏梅, 沈忱思, 杨静. 磁性Cu(Ⅰ)@壳聚糖微球的一步法制备及其对染色废水的净化 [J]. 分析试验室, 2019,38(3): 255-260.

ZENG X M, SHEN Z S,YANG J. One-step preparation of magnetic Cu(Ⅰ)@ Chitosan microspheres and its applicationfor

dye removal [J]. Chinese Journal of Analysis Laboratory, 2019, 38(3): 255-260.

[56]薛海燕, 仇旭东. 改性壳聚糖复合微球对花青素的吸附及解吸 [J]. 食品科技, 2018, 43(4): 270-276.

XU H Y, CHOU X D. Adsorption and desorption of anthocyanins by modified chitosan composite microspheres [J]. Food

Science and Technology, 2018, 43(4): 270-276.

[57]BI M J, LIU B Q, PEI D, et al. Adsorption of flavonoids with glycosides: design and synthesis of chitosan-functionalized microspheres [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130221.

[58]喻海兰, 周利民, 唐晓欢, 等. 离子印迹壳聚糖/碳纳米管复合膜对U(Ⅵ)的选择性吸附研究 [J]. 原子能科学技术,

2023, 57(1): 23-33.

YU H L, ZHOU L M, TANG X H, et al. Selective adsorption of U(Ⅵ) onto ion-imprinted chitosan/carbon nanotube composite membrane [J]. Atomic Energy Science and Technology, 2023, 57(1): 23-33.

[59]ZHUANG S T, ZHU K K, HU J, et al. Selective and effective adsorption of cesium ions by metal hexacyanoferrates(MHCF, M=Cu, Co, Ni) modified chitosan fibrous biosorbent [J]. Science of the Total Environment, 2022, 835:155575.

[60]梁栋, 刘伟, 杨仲田. 丙烯酰胺改性壳聚糖处理含Co2+ 模拟放射性废水吸附工艺研究 [J]. 化工新型材料, 2019,47(11): 204-208.

LAING D, LIU W, YANG Z T. Study on adsorption of Co2+ simulated radioactive water by modified chitosan [J]. New

Chemical Materials, 2019, 47(11): 204-208.

[61]HUANG M N, XIE L S, WANG Y J, et al. Efficient and selective capture of uranium by polyethyleneimine-modified chitosan composite microspheres from radioactive nuclear waste [J]. Environmental Pollution, 2023, 316: 120550.

[62]AHMAD M, REN J, ZHANG Y, et al. Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater [J]. Chemical Engineering Journal, 2022, 427: 130934.

[63]ZHANG Q H, LI Q, MAO Q, et al. Cross-linked chitosan microspheres: an efficient and eco-friendly adsorbent for iodide removal from waste water [J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 2019, 209: 215-222.

[64]YAN L A, YING D, ENVELOPE Q,et al. Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: performance and mechanism [J]. International Journal of Biological Macromolecules,2022, 214: 54-66.

[65]HUMELNICU D, DINU M V, DRǍGAN E S. Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents [J]. Journal of Hazardous Materials, 2011, 185: 447-455.