ISSN 1008-5548

CN 37-1316/TU

最新出版

石灰和粉煤灰掺量对再生骨料-生土复合材料耐久性能的影响

Effects of lime and fly ash dosage on durability of recycled aggregat-raw soil composite


何 晓1a,周文娟1,刘 洋2,段珍华3

1. 北京建筑大学, a. 土木与交通工程学院, b. 北京住房城乡建设部建筑垃圾资源化工程技术创新中心,北京 100044;

2. 丹东市自然资源事务服务中心,辽宁 丹东 118000;3. 同济大学 土木工程学院,上海 200092


引用格式:

何晓,周文娟,刘洋,等 . 石灰和粉煤灰掺量对再生骨料-生土复合材料耐久性能的影响[J]. 中国粉体技术,2025,31

(5):1-10.

HE Xiao,ZHOU Wenjuan,LIU Yang,et al. Effects of lime and fly ash dosage on durability of recycled aggregate-raw soil composite[J].China Powder Science and Technology,2025,31(5):1−10.

DOI:10.13732/j.issn.1008-5548.2025.05.012

收稿日期:2024-09-03,修回日期:2024-12-31,上线日期:2025-03-01

基金项目:国家重点研发计划项目,编号:2022YFC3803403。

第一作者简介:何晓(2000—),女,硕士生,研究方向为固体废弃物的资源化利用。E-mail:hexiaoya0222@163. com。

通信作者简介:周文娟(1977—),女,副教授,硕士,硕士生导师,研究方向为固体废弃物的资源化利用。E-mail:zhouwenjuan@bucea.edu. cn。


摘要:【目的】为了在现代建筑行业中充分发挥生土的作用,在再生骨料、生土中掺入石灰、粉煤灰以改善耐久性能。【方法】设生土、再生细骨料、再生粗骨料的质量分数分别为60%、10%、30%,再掺入石灰、粉煤灰进行化学改性制得再生骨料-生土复合材料;通过耐水、冲刷、干湿循环及冻融循环试验分析再生骨料-生土复合材料的耐水、抗冲刷、抗干湿循环和抗冻融循环性能;采用X射线衍射仪、扫描电镜对再生骨料-生土复合材料的水化产物和微观形貌进行分析和表征。【结果】 当石灰质量分数为8%、粉煤灰质量分数为14%时,再生骨料-生土复合材料的软化系数最大,耐水性能最好;抗冲刷时间可达到60 min,质量损失率最小,抗冲刷性能最好;干湿循环次数为15时,质量损失率和抗压强度损失率均为最小值,抗干湿循环性能最好;当冻融循环次数为25时,质量损失率小于5%,抗压强度损失率小于25%,最佳冻融循环次数为25。【结论】 石灰的碱性作用激发生土、粉煤灰和再生微粉中的活性物质SiO2、 Al2O3参与水化反应,生成水化硅酸钙(C-S-H)凝胶、水化硅铝酸钙(C-A-S-H)凝胶、氢氧化钙晶体以及钙钒石晶体,填补了再生骨料-生土复合材料内部的裂缝和孔隙,增强了颗粒间的黏结力,提高了再生骨料-生土复合材料的耐久性能。

关键词:再生骨料-生土复合材料;石灰;粉煤灰;耐久性能;微观结构

Abstract  

Objective Raw soil has low strength and poor durability, but it offers advantages such as recyclability, good thermal performance, and ease of construction. The strength and durability of raw soil can be improved through chemical modification by active materials such as cement, gypsum, lime, and fly ash. The strength of raw soil can be improved through physical modification by recycled aggregates made from crushed and screened waste concrete, bricks,etc.Therefore, to fully utilize raw soil in modern construction industry, lime and fly ash are needed to blend into recycled aggregate-raw soil composite to improve durability.

Methods The mass fractions of raw soil, recycled fine aggregates, and recycled coarse aggregates were set at 60%,10%, and  30%, respectively. The mass of water was set to 14% of the total mass of the three raw materials. After mixing the three raw materials, water was added to produce the initial specimen of recycled aggregate-raw soil composite. Chemical modification was carried out by adding different dosages of lime and fly ash,with lime mass fractions set at 6%,7%,7%,8%,and 8%,and fly ash mass fractions set at 12%,12%,13%,13%, and 14%,respectively. Through water resistance, erosion, wet-dry cycling,and freeze-thaw cycling tests,the water resistance,erosion resistance,wet-dry cycling resistance,and freeze-thaw resistance of the recycled aggregate-raw soil composite were analyzed. X-ray diffraction and scanning electron microscopy were used to characterize the hydration products and microstructure of the recycled aggregate-raw soil composite.

Results and Discussion With the increase in lime and fly ash dosage,the softening coefficient of the specimens increased,and the water resistance was gradually enhanced. When the lime mass fraction was 8% and the fly ash mass fraction was 14%,the recycled aggregate-raw soil composite specimen exhibited the highest softening coefficient and the best water resistance. Its erosion resistance was significantly improved with an erosion resistance time of up to 60 minutes. The specimen had the smallest mass loss rate. After 15 wet-dry cycles, both the mass loss rate and compressive strength loss rate were at their minimum values,showing the best resistance to wet-dry cycles. After 25 freeze-thaw cycles,the mass loss rate of the specimen was less than 5% and the compressive strength loss rate was less than 25%,demonstrating the best freeze-thaw resistance of the recycled aggregate-raw soil composite specimen.

Conclusion The alkaline effect of lime activates the reactive substances(SiO2,Al2O3) in the raw soil, fly ash, and recycled micro powder, participating in the hydration reactions to generate C-S-H gel,C-A-S-H gel,Ca(OH)2 crystals, and calcium vanadate crystals. These hydration products fill the cracks and pores within the recycled aggregate-raw soil composite, enhancing the adhesion between the particles and improving the durability of the recycled aggregate-raw soil composite.

Keywords:recycled aggregate-raw soil composite; lime; fly ash; durability; microstructure


参考文献(References)

[1]张坤. 生土基材料强度标准试验方法研究[D]. 西安:长安大学,2017.

ZHANG K. Study on standard test method of strength of raw soil-based materials[D]. Xi’an:Changan University,2017.

[2]张坤,王毅红,杨战社,等. 以河砂为掺料的改性生土材料抗压试验研究[J]. 建筑结构,2019,49(4):86-90.

ZHANG K, WANG Y H, YANG Z S, et al. Experimental analysis on compressive test of raw soil material modified by riversand[J]. Building Structure,2019,49(4):86-90.

[3]刘芳. 掺入石子、砂子、水泥的改性生土材料抗压试验研究[D]. 西安:长安大学,2017.

LIU F. Experimental study on compressive strength of modified raw soil materials mixed with stones, sand and cement [D].Xi’an: Changan University,2017.

[4]VELASCO-AQUINO A A, ESPUNA-MUJICA J A, PEREZ-SANCHEZ J F, et al. Compressed earth block reinforced with coconut fibers and stabilized with aloe vera and lime[J]. Journal of Engineering, Design and Technology,2021,19(3):795-807.

[5]EDRIS W, MATALKAH F, RBABAH B, et al. Characteristics of hollow compressed earth block stabilized using cement,lime, and sodium silicate[J]. Civil and Environmental Engineering,2021,17(1):200-208.

[6]JIANG Y, DAI H, FISONGA M, et al. Feasibility and mechanism of high alumina cement-modified chlorine saline soil as subgrade material[J]. Construction and Building Materials,2024,429:136411.

[7]DEGIRMENCI N. The using of waste phosphogypsum and natural gypsum in adobe stabilization[J]. Construction and Building Materials,2008,22(6):1220-1224.

[8]ZHAO G W, WU T, REN G Z, et al. Modifying behavior of calcined waste phosphorus slag on the dispersivity and mechanical properties of dispersive soil[J]. Soils and Foundations,2024,64(6):101524.

[9]MAIXENT LOUBOUTH S J, AHOUET L, ELENGA R G, et al.Improvement of the geotechnical properties of the soil of lime-treated cubitermes mound soil[J]. Open Journal of Civil Engineering,2020,10(1):22-31.

[10]杨永,张树青,荣辉,等. 石灰基材料对生土改性效果及机制研究[J]. 功能材料,2019,50(4):4067-4073.

YANG Y, ZHANG S Q, RONG H, et al. Study on modification effect and mechanism of lime-based materials on raw soil[J].Journal of Functional Materials,2019,50(4):4067-4073.

[11]KASINIKOTA P, TRIPURA D D. Evaluation of compressed stabilized earth block properties using crushed brick waste[J].Construction and Building Materials,2021,280:122520.

[12]中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京:中国建筑工业出版社,2009.

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of basic properties of construction mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press,2009.

[13]国家市场监督管理总局,国家标准化管理委员会 . 蒸压加气混凝土性能试验方法: GB/T 11969—2020[S]. 北京:中国标准出版社,2020.

State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test methods of autoclaved aerated concrete: GB/T 11969—2020[S]. Beijing: Standards Press of China,2020.

[14]中华人民共和国住房和城乡建设部,国家市场监督管理总局 . 混凝土长期性能和耐久性能试验方法标准:GB/T50082—2024[S]. 北京:中国建筑工业出版社,2024.

State Administration for Market Regulation, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of long-term performance:GB/T 50082—2024[S]. Beijing:China Architecture & Building Press,2024.

[15]张万涛,吕治刚,王睿,等. 粉煤灰及电石渣改良膨胀土干湿循环特性研究[J]. 山西建筑,2019,45(21):61-63.

ZHANG W T, LV Z G, WANG R, et al. Wet and dry cycling characteristics of expansive soil stabilized with fly ash and calcium carbide residues[J]. Shanxi Architecture,2019,45(21):61-63.

[16]冯春花,沈振球,李东旭. 粉煤灰在饱和Ca(OH)2溶液中的溶出行为[J]. 材料导报,2014,28(4):130-133.

FENG C H, SHEN Z Q, LI D X. Reaction behavior of fly ash in saturated calcium hydroxide solutions at room temperature[J].Materials Review,2014,28(4):130-133.

[17]侯新凯,梁爽,刘柱燊,等. 粉煤灰中玻璃体含量的化学物相分析[J].+硅酸盐通报,2017,36(11):3587-3594.

HOU X K, LIANG S, LIU Z S, et al. Chemical phase analysis of glass content in fly ash[J]. Bulletin of the Chinese Ceramic Society,2017,36(11):3587-3594.

[18]李述俊,赵霄龙,李秋义,等 . 再生微粉基本性能及活性试验研究[J]. 硅酸盐通报,2019,38(10):3314-3319,3325.

LI S J, ZHAO X L, LI Q Y, et al. Experimental study on basic properties and activity of recycled fine powder[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3314-3319,3325.

[19]邢玉东,朱浮声,王常明. 辽西黄土的物质组成与微观结构特征[J]. 岩土工程技术,2008,22(3):155-159.

XING Y D, ZHU F S, WANG C M. Physical components and microstructure characteristics of loess in west of Liaoning[J].Geotechnical Engineering Technique,2008,22(3):155-159.

[20]苏英,刘俊峰. 咸阳市区黄土显微结构研究[J]. 水土保持通报,2006,26(5):4-9.

SU Y, LIU J F. Study on micro-structures of loess in the Xianyang downtown area[J]. Bulletin of Soil and Water Conservation,2006,26(5):4-9.

[21]陈秋雨. 生土材料改性试验研究[D]. 上海:上海交通大学,2017:58-59.

CHEN Q Y. Experimental study on modification of raw soil materials[D]. Shanghai: Shanghai Jiao Tong University,2017:58-59.

[22]马聪,杜骁,陈兵. 自密实生土基改性材料的强度发展规律研究[J]. 新型建筑材料,2016,43(1):10-13.

MA C, DU X, CHEN B. Experimental study on strength development rules of self-compacting soil-based walls[J]. New Building Materials,2016,43(1):10-13.

[23]黄燕,胡翔,史才军,等 . 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报,2023,37(1):106-117.

HUANG Y, HU X, SHI C J, et al. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete[J]. Materials Reports,2023,37(1):106-117.

[24]王萧萧,申向东. 不同掺量粉煤灰轻骨料混凝土的强度试验研究[J]. 硅酸盐通报,2011,30(1):69-73,78.

WANG X X, SHEN X D. Experimental study on strength of lightweight aggregate concrete with different contents of fly ash[J].Bulletin of the Chinese Ceramic Society,2011,30(1):69-73,78.