丛培澳,王荣耀,李春生,陈国柱
济南大学 化学化工学院, 山东 济南 250022
引用格式:
丛培澳,王荣耀,李春生,等 . 三明治结构催化剂 Ce-MOF@Pt@TpPa-COF 的制备、表征与性能[J].中国粉体技术,2025,31(3):1-12.
CONG Peiao,WANG Rongyao,LI Chunsheng,et al. Preparation,characterization,and performance of sandwich-like structure catalyst Ce-MOF@Pt@TpPa-COF[J]. China Powder Science and Technology,2025,31(3):1−12.
DOI:10.13732/j.issn.1008-5548.2025.03.009
收稿日期:2024-07-31, 修回日期:2024-12-28, 上线日期:2025-02-25。
基金项目:国家自然科学基金项目,编号:21878121;山东省自然科学基金项目,编号:ZR202102230042,ZR2023MB103;济南大学2023年学科交叉会聚建设项目,编号:XKJC-202302。
第一作者简介:丛培澳(2000—),男,硕士研究生,研究方向为工业催化材料制备。E-mail:319468066@qq.com。
通信作者简介:李春生(1967—),男,教授,博士,博士生导师,研究方向为工业催化材料。E-mail:chm_lics@ujn.edu.cn; 陈国柱(1976—),男,教授,博士,博士生导师,研究方向为工业催化材料。E-mail:chm_chengz@ujn.edu.cn。
摘要:【目的】为了提高肉桂醛加氢过程中制备苯丙醛的转化率和选择性,制备具有三明治结构的选择性催化加氢催化剂。【方法】 采用溶剂热法合成金属有机框架(metal-organic framework,MOF)Ce-UiO-66-NH2( Ce-MOF)内核;利用胶体浸渍法将铂(Pt)金属纳米颗粒均匀地负载到 Ce-MOF 内核表面,制得 Ce-MOF@Pt;通过溶剂热法将三醛基间苯三酚 (2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde,Tp)和对苯二胺(p-phenylenediamine,Pa)构建共价有机框架(covalent organic framework,COF)壳层TpPa-COF,将壳层TpPa-COF通过共价键C—N连接到Ce-MOF上,制备以Ce-MOF为内核、 以 金 属 纳 米 颗 粒(nanoparticles,NPs)Pt NPs 为 中 间 层 、 以 TpPa-COF 为 壳 层 的 具 有 三 明 治 结 构 的 复 合 催 化 剂 Ce-MOF@Pt@TpPa-COF; 制备催化剂 TpPa-COF@Pt,对 Ce-MOF@Pt、Ce-MOF@Pt@TpPa-COF、TpPa-COF@Pt 的结构和性能进行比较,探讨3组催化剂在肉桂醛加氢制备苯丙醛过程中的转化率、选择性和稳定性。【结果】 在反应时间为6 h的条件下,Ce-MOF@Pt、Ce-MOF@Pt@TpPa-COF、 TpPa-COF@Pt对肉桂醛的转化率分别为 92%、 89%、 99%,对目标 产物苯丙醛的选择性分别为 21%、50%、1%,对目标产物苯丙醛的产率分别为 19%、45%、1%;与 Ce-MOF@Pt、TpPa-COF@Pt相比,具有三明治结构的催化剂Ce-MOF@Pt@TpPa-COF具有更优秀的稳定性。【结论】 在肉桂醛催化加氢过程中,Ce-MOF@Pt@TpPa-COF 能够显著提高苯丙醛在多相催化加氢反应过程中的选择性和产率,并保持了更好的稳定性。
关键词: 三明治结构;金属有机框架;共价有机框架;肉桂醛;选择性加氢
Abstract
Objective To improve the conversion rate and selectivity of phenylpropionaldehyde(HCAL)in cinnamaldehyde(CAL)hydrogenation,and to verify the effectiveness of covalent organic framework(COF) as a shell to improve the performance of heterogeneous catalytic hydrogenation,a selective catalytic hydrogenation catalyst with a sandwich-like structure is prepared.
Methods A metal-organic framework(MOF),Ce-UiO-66-NH2(Ce-MOF),was synthesized as a core via solvothermal method. Using the colloidal impregnation method,platinum(Pt) metal nanoparticles(NPs) were uniformly loaded on the surface of the Ce-MOF core to obtain Ce-MOF@Pt.2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde(Tp)and p-phenylenediamine (Pa) were added via solvothermal method to construct a covalent organic framework (COF)shell,TpPa-COF. The shell was then covalently bonded to the Ce-MOF through a C-N bond to prepare the composite catalyst Ce-MOF@Pt@TpPa-COF with CeMOF as the core,Pt NPs as the intermediate layer,and TpPa-COF as the shell. Thecatalyst TpPa-COF@Pt was also prepared,and the the structures and performance of Ce-MOF@Pt,Ce-MOF@Pt@TpPa-COF,and TpPa-COF@Pt were compared regarding to the conversion rate,selectivity,and stability of the three catalyst groups during the hydrogenation of CAL to HCAL.
Results and Discussion At a reaction time of 6h,the conversion rates of CAL for Ce-MOF@Pt, Ce-MOF@Pt@TpPa-COF,and TpPa-COF@Pt were 92%,89%,and 99%,respectively. The selectivities for the target product HCAL were 21%,50%,and 1%,respectively. The yields of the target product HCAL were 19%,45%,and 1%,respectively. Compared to Ce-MOF@ Pt and TpPa-COF@Pt,Ce-MOF@Pt@TpPa-COF effectively maintained activity and stability at high temperatures and exhibited stronger resistance to deactivation.
Conclusion In the catalytic hydrogenation of CAL,Ce-MOF@Pt@TpPa-COF significantly improves the selectivity and yield of HCAL in heterogeneous catalytic hydrogenation reactions while maintaining better cyclic stability. The study provides insights into the research and applications of sandwich-like structure catalysts with TpPa-COF as the shell in heterogeneous catalysis.
Keywords: sandwich-like structure;metal-organic framework;covalent organic framework;cinnamaldehyde;selective hydrogenation
参考文献(References)
[1]HAN C H, MENG P, WACLAWIK E R, et al. Palladium/graphitic carbon nitride( g-C3N4) stabilized emulsion microreactor as a store for hydrogen from ammonia borane for use in alkene hydrogenation[J]. Angewandte Chemie( International Ed),2018, 57(45):14857-14861.
[2]ZHANG L F, ZHAO W H, ZHANG W H, et al. Gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction[J]. Nano Research, 2019, 12(5): 1181-1186.
[3]WANG X F, LIANG X H, GENG P, et al. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts[J]. ACS Catalysis, 2020, 10(4): 2395-2412.
[4]AVENDAÑO VILLARREAL J A, DELOLO F G, GRANATO A V, et al. The first one-pot metathesis-hydroformylation procedure:a straight synthesis of 2-arylpropanals from renewable 1-propenylbenzenes[J]. Catalysis Science & Technology,2021, 11(24): 8007-8013.
[5]WAGH D P, YADAV G D. Green synthesis of α-methylcinnamaldehyde via Claisen-Schmidt condensation of benzalde⁃hydewith propanal over Mg-Zr mixed oxide supported on HMS[J]. Molecular Catalysis, 2018, 459: 119-128.
[6]LIU Z D, NING L M, WANG K Y, et al. A new cobalt metal-organic framework as a substrate for Pd nanoparticles applied in high-efficiency nitro phenol degradation and cinnamaldehyde hydrogenation[J]. Dalton Transactions, 2020, 49(4): 1191- 1199.
[7]XIN H Y, ZHANG W B, XIAO X X, et al. Selective hydrogenation of cinnamaldehyde with NixFe1-xAl2O4+x composite oxides supported Pt catalysts: C O versus C C selectivity switch by varying the Ni/Fe molar ratios[J]. Journal of Catalysis,2021, 393: 126-139.
[8]JABOU K, KOCHKAR H, BERHAULT G, et al. Preparation and catalytic activity of nanostructured Pd catalysts supported on hydrogenotitanate nanotubes[J]. Journal of Materials Science, 2009, 44(24): 6677-6682.
[9]HANNAGAN R T, GIANNAKAKIS G, RÉOCREUX R, et al. First-principles design of a single-atom-alloy propane dehy drogenation catalyst[J]. Science, 2021, 372(6549): 1444-1447.
[10]ZHANG L, LIN J, LIU Z P, et al. Non-noble metal-based catalysts for acetylene semihydrogenation: from thermocatalysis to sustainable catalysis[J]. Science China Chemistry, 2023, 66(7): 1963-1974.
[11]ZENG Y, WANG Z, LIN W G, et al. In situ hydrodeoxygenation of phenol with liquid hydrogen donor over three supported noble-metal catalysts[J]. Chemical Engineering Journal, 2017, 320: 55-62.
[12]DU H, MA X Y, JIANG M, et al. Boosted activity of Cu/SiO2 catalyst for furfural hydrogenation by freeze drying[J]. Chinese Chemical Letters, 2022, 33(2): 912-915.
[13]TIAN Y J, GUO L H, QIAO C Z, et al. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation[J]. Applied Catalysis B: Environmental, 2023, 336: 122945.
[14]BALLESTEROS-SOBERANAS J, MARTíN N, BACIC M, et al. A MOF-supported Pd1-Au1 dimer catalyses the semihy⁃ drogenation reaction of acetylene in ethylene with a nearly barrierless activation energy[J]. Nature Catalysis, 2024, 7: 452-463.
[15]ZHONG Y C, LIAO P S, KANG J W, et al. Locking effect in metal@MOF with superior stability for highly chemoselective catalysis[J]. Journal of the American Chemical Society, 2023, 145(8): 4659-4666.
[16]YUAN K, SONG T Q, WANG D W, et al. Effective and selective catalysts for cinnamaldehyde hydrogenation: hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers[J]. Angewandte Chemie( International Ed), 2018, 57(20): 5708-5713.
[17]XU T T, SUN K, GAO D W, et al. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions[J]. Chemical Communications, 2019, 55(53): 7651-7654.
[18]DENG Z H, WANG X, WANG X L, et al. A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC[J]. Mikrochimica Acta, 2019, 186(2): 108.
[19]GAO P, WEI R Y, LIU X H, et al. Covalent organic framework-engineered polydopamine nanoplatform for multimodal imaging-guided tumor photothermal-chemotherapy[J]. Chemical Communications, 2021, 57(46): 5646-5649.
[20]LU G L, HUANG X B, WU Z Y, et al. Construction of covalently integrated core-shell TiO2 nanobelts@COF hybrids for highly selective oxidation of alcohols under visible light[J]. Applied Surface Science, 2019, 493: 551-560.
[21]CAI M K, LI Y L, LIU Q L, et al. One-step construction of hydrophobic MOFs@COFs core-shell composites for heterogeneous selective catalysis[J]. Advanced Science, 2019, 6(8): 1802365.
[22]ZHANG K Y, XI Z S, WU Z Y, et al. Visible-light-induced selective oxidation of amines into imines over UiO-66-NH2@ Au@COF core-shell photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(37): 12623-12633.
[23]张承昕, 王余莲, 苏峻樟, 等. 四苯基甲烷球磨法合成多孔碘蒸气吸附材料[J]. 中国粉体技术, 2024,30(3):158- 169.
ZHANG C X, WANG Y L, SU J Z, et al. Ball-milling synthesis of organic porous materials with tetraphenylmethane for iodine vapor adsorption[J]. China Powder Science and Technology, 2024, 30(3): 158-169.
[24]LU G L, HUANG X B, LI Y, et al. Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols[J]. Journal of Energy Chemistry, 2020, 43: 8-15.
[25]ZHOU W Q, LIU Y, TEO W L, et al. Construction of a sandwiched MOF@COF composite as a size-selective catalyst[J]. Cell Reports Physical Science, 2020, 1(12): 100272.
[26]TERANISHI T, HOSOE M, TANAKA T, et al. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition[J]. The Journal of Physical Chemistry B, 1999, 103(19): 3818-3827.
[27]KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527.
[28]CHANDRA S, KUNDU T, DEY K, et al. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J]. Chemistry of Materials, 2016, 28(5): 1489-1494.
[29]LI Y, PEI B, CHEN J J, et al. Hollow nanosphere construction of covalent organic frameworks for catalysis:( Pd/C)@TpPa COFs in suzuki coupling reaction[J]. Journal of Colloid and Interface Science, 2021, 591: 273-280.
[30]GARCíA-AGUILAR J, NAVLANI-GARCíA M, BERENGUER-MURCIA Á, et al. Evolution of the PVP-Pd surface interaction in nanoparticles through the case study of formic acid decomposition[J]. Langmuir, 2016, 32(46): 12110-12118.
[31]YU X M, LI J, DU M H, et al. Adaptive lattice-matched MOF and COF core-shell heterostructure for carbon dioxide pho⁃ toreduction[J]. Cell Reports Physical Science, 2023, 4(11): 101657.