宁 廓, 李 静, 闫良国, 宋 雯
济南大学 水利与环境学院, 山东 济南 250022
引用格式:
宁廓,李静,闫良国,宋雯 . 基于光热转换和高级氧化过程进行水处理的纳米材料研究进展[J].中国粉体技术,2025,31(3):1-11.
NING Kuo,LI Jing,YAN Liangguo,SONG Wen. Advances in nanomaterials for water treatment based on photothermal conversion and advanced oxidation processes[J]. China Powder Science and Technology,2025,31(3):1−11.
DOI:10.13732/j.issn.1008-5548.2025.03.007
收稿日期:2024-04-25, 修回日期:2024-06-28, 上线日期:2025-02-25。
基金项目:国家自然科学基金青年基金项目,编号:21577048。
第一作者简介:宁廓(2000—),男,硕士生,研究方向为光热蒸发协同高级氧化过程。E-mail:962561116@qq.com。
通信作者简介:闫良国(1971—),男,教授,博士,博士生导师,研究方向为环境功能材料与水处理技术。E-mail:chm_yanlg@ujn.edu.cn。
摘要:【目的】结合光热转换和高级氧化过程,寻求一种可持续、环保、低碳的水处理方案,解决水污染和水资源短缺问题。【进展】首先概述基于光热转换过程的金属、碳和半导体 3类纳米材料,然后概述基于高级氧化过程的光催化、芬顿和类芬顿反应、电催化、活化过硫酸盐4类纳米材料;最后着重综述基于光热转换-高级氧化过程的金属氧化物、金属有机框架和其他复合纳米材料3类纳米材料,指出该类材料通过提供催化活性位点、增强光热效应、参与电子传递等多种途径实现光热转换-高级氧化过程;介绍各种复合纳米材料的制备方法、蒸发速率、光热转换效率以及对有机污染物的降解效率,研究纳米复合材料在净化水体、降解水中有机污染物中的工作机制。【前景】基于光热转换-高级氧化过程的纳米复合材料中可同时兼顾水资源短缺和水污染问题,提高了水处理效率。
关键词: 纳米材料;光热转换过程;高级氧化过程;水处理
Abstract
Significance Photothermal conversion is a novel water treatment technology developed in recent years. It utilizes photothermal materials to convert solar energy into thermal energy for efficient water evaporation. If wastewater contains non-degradable or toxic organic compounds,advanced oxidation processes can degrade organic pollutants by generating highly oxidative free radicals or non-radical species. Combining photothermal conversion with advanced oxidation processes can leverage both their advantages,achieving water evaporation and degradation of pollutants simultaneously.Nanomaterials,with their unique physical,chemical,and nanoscale properties,can serve as catalysts,adsorbents,or carriers in water treatment methods,including advanced oxidation processes,adsorptive coagulation techniques,and biological water treatment systems,providing new materials to address water scarcity and pollution.
Progress Nanomaterials based on photothermal conversion processes primarily include metal(gold,silver,aluminum,copper,palladium,etc.)nanomaterials,carbon nanomaterials(carbon nanotubes,GO,rGO,etc.),and semiconductor nanomaterials (TiO2,Ti2O3,MoS2,Fe3O4,etc.).Additionally,ceramics,nitrides,and organic polymers such as polypyrrole are also commonly used as photothermal conversion materials. Nanomaterials based on advanced oxidation processes mainly include photocatalytic materials(TiO2,ZnO,CdS,BN,etc.), Fenton and Fenton-like reaction materials(Fe3O4,Fe2O3,FeO,etc.),electrocatalytic materials(MnO2,PbO2,MoS2, CoS2,TiN,graphene,carbon nanotubes),and activated persulfate materials. Nanomaterials with both photothermal conversion and catalytic capabilities include metal oxides(TiO2,ZnO,Fe2O3,CuO),metalorganic framework(MOFs),and composite nanomaterials.
Conclusions and Prospects Photothermal conversion nanomaterials,due to their nanoscale size,large surface area,and strong light absorption capabilities,can achieve efficient photothermal conversion,significantly enhancing water evaporation rate and making water treatment more efficient.The photothermal process has broad applications in seawater desalination, wastewater treatment,power generation,agricultural irrigation, and sterilization.Nanomaterials based on advanced oxidation processes function as catalysts with large surface area and numerous active sites,facilitating the generation of highly reactive radicals(·OH,SO4·-,and ∙O2-)and non-radical species(1O2),thereby capable of decomposing complex organic pollutants into carbon dioxide,water,and harmless or low-toxic intermediates. Nanomaterials based on the photothermal conversion-advanced oxidation process can absorb solar energy and convert it into thermal energy for photothermal conversion,heating molecules to the state of evaporation. It also can serve as catalysts to generate active substances with strong oxidative capacities that disrupt pollutant chemical structures. Moreover,using sunlight and heat generated by the photothermal process can enhance the degradation of pollutants,reducing the energy and costs required for wastewater treatment. Further studies can focus on the development of high-performance nanomaterials,such as improving the stability of MOFs and reducing the use of toxic metal ions to lower potential secondary pollution risks. It is necessary to design more systems based on the photothermal evaporation-advanced oxidation process,such as evaporators,photothermal collection systems, advanced oxidation reactors,etc.,to improve the continuous operation capability of systems and explore new application areas.
参考文献(References)
[1]陈二烈. 全球淡水资源危机愈演愈烈[J]. 生态经济,2022,38(10):5-8.
CHEN E L. The global freshwater crisis is getting worse[J]. Ecological Economy,2022,38(10):5-8.
[2]HE F,WU X C,GAO J,et al. Solar-driven interfacial evaporation toward clean water production:burgeoning materials,concepts and technologies[J].Journal of Materials Chemistry A,2021,9(48):27121-27139.
[3]LI J Y,JING Y J,XING G Y,et al. Solar-driven interfacial evaporation for water treatment:advanced research progress and challenges[J].Journal of Materials Chemistry A,2022,10(36):18470-18489.
[4]LI R,LI Y,JIA X H,et al. 2D/2D ultrathin polypyrrole heterojunct aerogel with synergistic photocatalytic-photothermal evaporation performance for efficient water purification[J].Desalination,2024,574:117295.
[5]ZHOU L,ZHUANG S D,HE C Y,et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion[J] Nano Energy,2017 32:195-200.
[6]ZHOU L,TAN Y L,WANG J Y,et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J].Nature Photonics,2016,10:393-398.
[7]WANG D Y,LIN X F,WU Y J,et al. Hanging photothermal fabric based on polyaniline/carbon nanotubes for efficient solar water evaporation[J]. ACS Omega,2023,8(47):44659-44666.
[8]田杰, 孙岳玲, 毋伟. 3D石墨烯的简易制备及其在太阳能界面蒸发中的应用[J].中国粉体技术,2022,28(3):116- 123.
TIAN J, SUN Y L, WU W. Simple preparation of 3D graphene and its application in solar interface evaporation[J]. China Powder Science and Technology, 2022, 28(3):116-123.
[9]LI J, SHAO Y J, SONG W, et al. Ultrahigh solar vapor evaporation rate of super-hydrophilic aerogel by introducing envi⁃ ronmental energy and convective flow[J]. Chemical Engineering Journal, 2023, 466: 143281.
[10]WANG N, XU H F, YAO J X, et al. Flower-shaped carbon nanomaterials for highly efficient solar-driven water evapora⁃ tion[J]. Molecules, 2022, 27(21): 7163.
[11]YANG Y, LIU C, WANG J, et al. Janus 3D graphene based evaporator with controllable wettability for highly efficient solar desalination[J]. Desalination, 2023, 558: 116639.
[12]ZADA I, ZHANG W, SUN P, et al. Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation[J]. Applied Materials Today, 2020, 20: 100669.
[13]ZHAO H, LI X, DU X. T-shape solar evaporator constructed with natural wood and Ti2O3 nanoparticles for water evapora⁃ tion and desalination[J]. Materials Today Sustainability, 2023, 24: 100538.
[14]XIAO J X, GUO Y, LUO W Q, et al. A scalable, cost-effective and salt-rejecting MoS2/SA@melamine foam for continu⁃ ous solar steam generation[J]. Nano Energy, 2021, 87: 106213.
[15]ZAHMATKESH B B,NIAZMAND H,GOHARSHADI E K. Synergistic effect of Fe3O4 nanoparticles and Au nanolayer in enhancement of interfacial solar steam generation[J]. Materials Research Bulletin, 2023, 162: 112178.
[16]XUE C R, HUANG R R, XUE R Z, et al. Design of ultrathin TiO2 nanosheets coated Ti plate for enhanced interfacial solar driven water evaporation performance[J]. Journal of Alloys and Compounds, 2022, 909: 164843.
[17]YANG B, ZHANG Z M, LIU P T, et al. Flatband λ -Ti3O5 towards extraordinary solar steam generation[J]. Nature, 2023, 622(7983): 499-506.
[18]CHEN L, YAO D X, LIANG H Q, et al. Highly stable, easily regenerable photothermal porous black ceramics used in an energy-efficient bionic system for practical solar-driven interfacial evaporation[J]. Ceramics International, 2023, 49(22):34673-34681.
[19]HAO S Y, HAN H C, YANG Z Y, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials[J]. Nano-Micro Letters, 2022, 14(1): 178.
[20]SHAO Y J, LI J, LI Y F, et al. In situ polymerization of three-dimensional polypyrrole aerogel for efficient solar-driven interfacial evaporation and desalination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 680: 132662.
[21]KIM J, NGUYEN T N, YOO H. Fabrication and photocatalytic activity of reduced dendritic fibrous nanotitania[J]. Applied Surface Science, 2024, 654: 159446.
[22]ZHANG Q P, XIE G Z, DUAN M Y, et al. Zinc oxide nanorods for light-activated gas sensing and photocatalytic applica⁃ tions[J]. ACS Applied Nano Materials, 2023, 6(19): 17445-17456.
[23]SHARMA S, DUTTA V, RAIZADA P, et al. Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 271-306.
[24]DUAN L J, WANG B, HECK K, et al. Efficient photocatalytic PFOA degradation over boron nitride[J]. Environmental Science & Technology Letters, 2020, 7(8): 613-619.
[25]ZHAO X Y, WEI J, GE J L, et al. Preparation of TiO2 composite photocatalysts and their photocatalytic performance[J]. Journal of Macromolecular Science, Part B, 2023, 62(6): 280-296.
[26]YAO K, WEI J, HONG P D, et al. Mechanistic insight into active species formation during Fenton-like processes by regu⁃ lating dissimilar charged groups on Fe3O4 nanospheres[J]. Separation and Purification Technology, 2023, 319: 124082.
[27]LIU Z J, GE X Y, WANG Y C, et al. Enhancing the Fenton-like reactions performance of copper-iron oxide by inducing a lower valence state using oxidized g-C3N4 support[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133135.
[28]AN Z J, HU Y F, ZHANG D, et al. Preparation of MoS2/SiO2 composites as fixed-bed reactors for Fenton-like advanced oxidation of sulfonamides in water[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107867.
[29]WANG Z M, BERBILLE A, FENG Y W, et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders[J]. Nature Communications, 2022, 13(1): 130.
[30]SUN H L, CHEN S L, ZHANG B, et al. Cation-doped sea-urchin-like MnO2 for electrocatalytic overall water splitting[J]. Dalton Transactions, 2023, 52(46): 17407-17415.
[31]EL AGGADI S, ENNOUHI M, BOUTAKIOUT A, et al. Iron( III)-doped PbO2 and its application as electrocatalyst for decomposition of phthalocyanine dye[J]. Environmental Science and Pollution Research, 2023, 30(27): 70183-70193.
[32]PRABHAKAR VATTIKUTI S V, NAGAJYOTHI P C, DEVARAYAPALLI K C, et al. Hybrid Ag/MoS2 nanosheets for effi⁃ cient electrocatalytic oxygen reduction[J]. Applied Surface Science, 2020, 526: 146751.
[33]YANG C, CHANG Y X, KANG H Y, et al. Fe-doped CoS2 nanoparticles supported CoS2 microspheres@N-doped carbon electrocatalyst for enhanced oxygen evolution reaction[J]. Applied Physics A, 2021, 127(6): 465.
[34]HE B L, SHEN J S, WANG B, et al. Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reac⁃ tion: a theoretical study[J]. Physical Chemistry Chemical Physics, 2021, 23(29): 15685-15692.
[35]原晓菲, 钟睿, 洪若瑜, 等 . 等离子体法制备及改性石墨烯粉体的研究进展[J]. 中国粉体技术, 2022, 28(3): 96-106.
YUAN X F, ZHONG R, HONG R Y, et al. Research progress in plasma preparation and modification of graphene powder[J]. China Powder Science and Technology, 2022, 28(3): 96-106.
[36]SU J J, MUSGRAVE C B, SONG Y, et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports[J]. Nature Catalysis, 2023, 6: 818-828.
[37]CHEN S X, HE P, WANG X J, et al. Co/Sm-modified Ti/PbO2 anode for atrazine degradation: effective electrocatalytic performance and degradation mechanism[J]. Chemosphere, 2021, 268: 128799.
[38]LI S H, NING X E, HAO P Y, et al. Defect-rich MoS2 piezocatalyst: efficient boosting piezocatalytic activation of PMS activity towards degradation organic pollutant[J]. Dyes and Pigments, 2022, 206: 110678.
[39]TIAN K, HU L M, LI L T, et al. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment[J]. Chinese Chemical Letters, 2022, 33(10): 4461-4477.
[40]GU A T, WANG P, CHEN K W, et al. Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol[J]. Separation and Purification Technology, 2022, 298: 121461.
[41]GU A T, GONG C H, HE M L, et al. MOFs-derived Co-Fe sulfides as highly efficient and stable catalysts to activate per⁃ oxymonosulfate for the degradation of trichlorophenol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 678: 132462.
[42]GUO M Y, YUAN B H, SUI Y, et al. Rational design of molybdenum sulfide/tungsten oxide solar absorber with enhanced photocatalytic degradation toward dye wastewater purification[J]. Journal of Colloid and Interface Science, 2023, 631: 33-43.
[43]HE P P, LAN H Y, BAI H Y, et al. Rational construction of“ all-in-one” metal-organic framework for integrated solar steam generation and advanced oxidation process[J]. Applied Catalysis B: Environmental, 2023, 337: 123001.
[44]YUAN B H, SUI Y, DONG J, et al. A high-efficiency solar water evaporation-photocatalysis system achieved by manipu⁃ lating surface wettability and constructing heterojunction[J]. Applied Surface Science, 2023, 611: 155678.
[45]SONG Y H, LING L, WESTERHOFF P, et al. Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs[J]. Nature Communications, 2021, 12(1): 4101.
[46]SUN C, ZHAO K F, BOIES A, et al. Boosting total oxidation of methane over NiO nanocrystalline decorated ZnO-CoNi solid solution via photothermal synergism[J]. Applied Catalysis B: Environmental, 2023, 339: 123124.
[47]BAI H Y, HE P P, HAO L, et al. Engineering self-floating Fe2O3/N, O-doped carbon foam as a bifunctional interfacial solar evaporator for synergetic freshwater production and advanced oxidation process[J]. Journal of Environmental Chemi⁃ cal Engineering, 2022, 10(5): 108338.
[48]LIU J, CHEN H Y, ZHU C S, et al. Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3[J]. Journal of Colloid and Interface Sci⁃ ence, 2022, 622: 526-538.
[49]CHEN L H, YIN M, XIAO C H, et al. MXene-based PCC-IS/M@TiO2 ternary integrated heterogeneous conjunctiva for efficient interfacial evaporation and photocatalytic degradation[J]. Desalination, 2024, 575: 117312.
[50]CHEN B, LIU L, SONG Y, et al. Functional upcycling of waste polyester into Cr-MOF towards synergistic interfacial solar evaporation and organic pollutant degradation[J]. Materials Today Sustainability, 2023, 24: 100561.
[51]FAN Z F, LIU J, LIU H J, et al. Synergism of solar-driven interfacial evaporation and photo-Fenton Cr(VI) reduction by sustainable Bi-MOF-based evaporator from waste polyester[J]. Journal of Energy Chemistry, 2024, 94: 527-540.
[52]YAN S W, SONG H J, LI Y, et al. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photo⁃ catalytic decontamination and water evaporation[J]. Applied Catalysis B: Environmental, 2022, 301: 120820.
[53]ZHANG D, ZHANG M H, CHEN S Y, et al. Scalable, self-cleaning and self-floating bi-layered bacterial cellulose bio⁃ foam for efficient solar evaporator with photocatalytic purification[J]. Desalination, 2021, 500: 114899.