ISSN 1008-5548

CN 37-1316/TU

最新出版

铅锌尾矿粉地聚物混凝土的制备及其性能

Preparation and properties of lead-zinc tailings powder geopolymer concrete


刘 清1, 许 飞1,2, 冉枫菱1, 唐小林1, 周云5, 杨 瑞4,, 王东星1,3

1. 南华大学 土木工程学院,湖南 衡阳 421001; 

2. 河南省中工设计研究院集团股份有限公司,河南 郑州 450009;

3. 武汉大学 土木建筑工程学院, 湖北 武汉 430072; 

4. 湖南工学院 土木与建筑工程学院, 湖南 衡阳 421001;

5. 湖南省亿辉建筑有限公司,湖南 衡阳 421001

引用格式:

刘清, 许飞, 冉枫菱, 等. 铅锌尾矿粉地聚物混凝土的制备及性能研究[J]. 中国粉体技术, 2025, 31(2): 1-10. 

LIU Qing, XU Fei, RAN Fengling, et al. Preparation and properties of lead-zinc tailings powder geopolymer concrete[J]. China Powder Science and Technology, 2025, 31(2): 1−10.

DOI:10.13732/j.issn.1008-5548.2025.02.012

收稿日期:2024-03-03, 修回日期:2024-07-12,上线日期:2025-02-19。

基金项目:国家自然科学基金项目,编号:52079098:湖南省自然科学基金青年A类项目,编号:2025JJ20049;湖南省自然科学基金区域 联合项目,编号:2023JJ50133、2024JJ7433。

第一作者简介: 刘清(1979—),女,教授,博士,硕士生导师,研究方向为固体废物资源化利用。E-mail: liuqing197901@163. com 。

通信作者简介: 杨瑞(1971—),女,实验师,硕士,研究方向为固体废物资源化利用。E-mail: hraveheart@163. com。 王东星(1984—),男,教授,博士,博士生导师,湖南省芙蓉计划高层次人才、湖南省杰青,研究方向为环境岩土工程。E-mail:dongxing-wang@whu. edu. cn。

摘要:【 目的】为了解决铅锌尾矿的堆存浪费及潜在环境污染问题,采用铅锌尾矿粉和偏高岭土为原材料,制备掺铅锌 尾矿粉地聚物混凝土,进而提高铅锌尾矿粉的利用率同时保护生态环境。 【方法】 通过调节水胶比(质量比,下同)、 铅锌 尾矿粉掺量(质量比,下同)、 碱当量测试混凝土的和易性、立方体破坏形态及力学性能,并根据力学性能试验结果对抗 压-劈拉强度进行非线性拟合。试混凝土的和易性、立方体破坏形态及力学性能,并根据力学性能试验结果对抗 压-劈拉强度进行非线性拟合。【结果】 当水胶比为0. 35时,地聚物混凝土和易性最优; 随着立方体抗压和劈拉强度的提 高,破坏形态由边界破坏转变为边界-骨料共同破坏; 抗压和劈拉强度随水胶比的增大呈先增加后显著下降的趋势,碱 当量为10. 5%时立方体抗压和劈拉强度随铅锌尾矿粉掺量的增加逐渐降低,碱当量为11. 5%和12. 5%时立方体抗压和 劈拉强度随铅锌尾矿粉掺量的增加先升高后降低; 通过幂函数拟合抗压-劈拉强度关系, 得到拟合公式fts=0. 115 f 0. 873 cu , 拉压比在1/15~1/12之间。【结论】  当水胶比、 铅锌尾矿粉掺量和碱当量分别为0. 35、 40%和1. 5%时,所制备的地聚物混 凝土具有良好的和易性和力学性能。

关键词:铅锌尾矿粉; 地聚物混凝土; 和易性; 破坏形态; 力学性能

Abstract

Objective China is a major global producer and consumer of lead and zinc, but the mining of these resources generates large quantities of lead-zinc tailings. Due to the differences in mining technologies and mineral processing techniques, the comprehensive utilization rate of these tailings remains low, resulting in significant accumulation. This not only poses serious environmental risks, such as heavy metal pollution, but also threatens public safety as dams of tailings reservoirs may breach due to earthquakes or floods. Although tailings have certain applications in building materials, such as cement clinker, unburned bricks, and wall panels, their overall resource utilization rate remains low. Geopolymer concrete, a green alternative to traditional cement, uses activated aluminosilicate precursors to replace conventional cementitious materials. This concrete has excellent mechanical properties and durability, with lower energy consumption and CO2 emissions compared to ordinary concrete. Using lead-zinc tailings powder, rich in silicon and aluminum, as a precursor for geopolymer concrete can help reduce the environmental impact of tailings accumulation, while reducing the amount of cement used, saving costs, and reducing CO2 emissions.

Methods In this study, the modulus of sodium water glass composite alkali activator was set to 1. 20. To avoid the influence of aggregates on experimental results, the mass ratio of aggregate to cementitious material was fixed to 2. 8, the sand ratio at 0. 30, and the concrete density at 2 500 kg/m3, according to the ordinary concrete mix design specifications. Experimental variables included: water-binder ratio( k1)( 0. 30, 0. 33, 0. 35, 0. 38, 0. 41, 0. 47, and 0. 5), lead-zinc tailings powder content(k2) (30%, 40%, and 50%), and alkali equivalent (k3) (Na2O content in sodium silicate relative to total cementitious material weight being 10. 5%, 11. 5%, and 12. 5%). By adjusting these variables, the workability, cube failure morphologies, and mechanical properties of the concrete were tested, and a nonlinear fitting analysis of compressive and splitting tensile strengths was carried out based on the test results.

Results and Discussion  k1 had a significant effect on the slump and expansion of geopolymer concrete. With the increase in k1, both slump and expansion increased, but its effects on cohesiveness and water retention were more complex. When k1 was less than 0. 35, the mixture became too viscous, requiring extensive vibration. When k1 was between 0. 35 and 0. 44, the mixture showed optimal cohesiveness and water retention, with no bleeding observed. However, when k1 was greater than 0. 44, segregation and bleeding occurred, adversely affecting mold formation. The choice of water-binder ratio was critical for concrete workability. Too low or too high ratios impaired the performance of geopolymer concrete. With the increase in cubic compressive strength, the failure mode changed from interfacial zone failure to a interfacial zone-aggregate joint failure. The compressive strength and splitting tensile strength increased first and then decreased significantly with the increase in k1. A power function was used to fit the relationship between splitting tensile strength and compressive strength, which was in good agreement with the experimental results. The tensile-compressive ratio for lead-zinc tailings geopolymer concrete was ranged from 1/12 to 1/15, comparable to that of ordinary concrete and high-performance concrete.

Conclusion Considering workability, compressive strength, and splitting tensile strength, the optimal mix for lead-zinc tailings geopolymer concrete is: water-binder ratio of 0. 35, lead-zinc tailings powder content of 40%, alkali equivalent of 11. 5%. Under these conditions, the compressive strength and splitting tensile strength are 55. 87 MPa and 4. 01 MPa, respectively. In general, geopolymer concrete prepared by lead-zinc tailings powder exhibits excellent workability and mechanical properties.

Keywords:lead-zinc tailings powder; geopolymer concrete; workability; failure morphology; mechanical property

参考文献(References)

[1]柴立元, 王云燕, 孙竹梅, 等. 绿色冶金创新发展战略研究[J]. 中国工程科学, 2022, 24(2): 10-21. 

CHAI L Y, WANG Y Y, SUN Z M, et al. Innovative development strategy of green metallurgy[J]. Strategic Study of CAE,2022, 24(2): 10-21.

[2]中华人民共和国自然资源部. 中国矿产资源报告(2023)[M]. 北京: 地质出版社, 2023. 

Ministry of Natural Resources PRC. China mineral resources( 2023)[M]. Beijing: Geology Press Beijing, 2023.

[3]易龙生, 何磊, 王泽祥. 铅锌尾矿的资源化利用[J]. 矿产综合利用, 2017(1): 12-15. 

YI L S, HE L, WANG Z X. Resource utilization of lead-zinc tailings[J]. Multipurpose Utilization of Mineral Resources,2017(1): 12-15.

[4]陈玲玲, 韩俊伟, 覃文庆, 等. 铅锌冶炼渣综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 49-55. CHEN L L, HAN J W, QIN W Q, et al. 

Advances in comprehensive utilization of lead-zinc smelting slag[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 49-55.

[5]张浩, 王辉, 汤红妍, 等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报, 2020, 40(3):1085-1094. 

ZHANG H, WANG H Y, TANG H Y, et al. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond[J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1085-1094.

[6]储城鑫, 帅向华, 万婧, 等. 尾矿库多灾种致灾风险评估体系[J]. 中国安全生产科学技术, 2023, 19(增刊1): 11-18. 

CHU C X, SHUAI X H, WAN J, et al. Multi-disaster risk assessment system of taillings pond[J]. Journal of Safety Science and Technology, 2023, 19(S1): 11-18.

[7]温龙新, 唐培垚, 李伟光. 铅锌尾矿的资源化综合利用研究进展[J]. 有色金属(矿山部分),2024,76(3):17-22. 

WEN L X,TANG P Y,LI W G. Research progress on comprehensive utilization of lead-zinc tailings[J]. Nonferrous Metals( Mining Part),2024,76(3):17-22.

[8]DUXSON P, FERNÁNDEZ-JIMÉNEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the ar[t J]. Journal of Materials Science, 2007, 42: 2917-2933.
[9]原元, 赵人达, 占玉林, 等. 粉煤灰-矿渣基地聚物混凝土的抗碳化性能[J]. 西南交通大学学报, 2021, 56(6):1275- 1282. 

YUAN Y, ZHAO R D, ZHAN Y L, et al. Carbonization resistance of fly ash-slag base polymer concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282.

[10]FAN X. A brief introduction on the research status and future prospects on geopolymer concrete[J]. IOP Conference Series Earth and Environmental Science, 2020, 508(1): 012124.

[11]DEY A, RUMMAN R, WAKJIRA T, et al. Towards net-zero emission: a case study investigating geopolymer concrete's sustainability potential using recycled glass powder and gold mine tailings[J]. Journal of Building Engineering, 2024: 108683.

[12]王德法, 朱梦云, 雒亿平, 等. 铜尾矿地聚物混凝土配合比设计研究[J]. 施工技术, 2022, 51(14): 105-109, 119.

 WANG D F, ZHU M Y, LUO Y P, et al. Design of mix proportion of copper tailings geopolymer concrete[ J]. Construction Technology, 2022, 51(14): 105-109, 119.

[13]毛志杰, 黄靓, 曾令宏, 等. 掺尾矿粉地聚物再生混凝土基本力学性能研究[J]. 混凝土, 2022(11): 91-95, 100. 

MAO Z J, HUANG L, ZENG L H, et al. Basic mechanical properties of recycled geopolymer concrete with tailings powder[J]. Concrete, 2022(11): 91-95, 100.

[14]WAQAS R M, BUTT F, ZHU X, et al. A comprehensive study on the factors affecting the workability and mechanical properties of ambient cured fly ash and slag based geopolymer concrete[J]. Applied Sciences, 2021, 11(18): 8722.

[15]中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建 筑工业出版社, 2017. 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press, 2017.

[16]中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑 工业出版社, 2019. 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019

[17]刘清, 唐卫兵, 招国栋. 碱浸铅锌渣地聚物的制备及其力学性能研究[J]. 硅酸盐通报, 2018, 37(8): 2650-2655. 

LIU Q, TANG W B, ZHAO G D, et al. Preparation and mechanical properties of alkali leaching of lead zinc slag geopolyme[r J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2650-2655.

[18]DAVlDOVITS J. Properties of geopolymer cements[C]//First International Conference on Alkaline Cements and Con⁃ cretes. Kiev: Kiev State Technical University,1994,1:131-149.

[19]ALMUTAIRI A L, TAYEH B A, ADESINA A, et al. Potential applications of geopolymer concrete in construction: a review[J]. Case Studies in Construction Materials, 2021, 15: e00733.

[20]ZHANG Y, LIU H, MA T, et al. Experimental assessment of utilizing copper tailings as alkali-activated materials and fine aggregates to prepare geopolymer composite[J]. Construction and Building Materials, 2023, 408: 133751.

[21]CUI Y, GAO K K, ZHANG P. Experimental and statistical study on mechanical characteristics of geopolymer concrete[J]. Materials, 2020, 13(7): 1651.

[22]袁振生. 地聚物混凝土基本力学性能及高温爆裂机理研究[D]. 广州: 华南理工大学, 2017.

YUAN Z S. Experimental study on basic mechanical properties and high-temperature spalling mechanism of geopolymer concrete[D]. Guangzhou: South China University of Technology, 2017.