李小鹏, 胡维波. 用于酸性介质中电催化二氧化碳还原的颗粒催化剂设计策略综述[J]. 中国粉体技术, 2025, 31(2): 1-10.
LI Xiaopeng, HU Weibo. Review of design strategies for particle catalysts used in electrocatalytic CO2 reduction in acidic media[J]. China Powder Science and Technology, 2025, 31(2): 1-10.
第一作者简介:李小鹏(1986—),男,研究员,博士,博士生导师,上海市东方学者,研究方向为电催化。E-mail:xiaopeng. li@dhu. edu. cn。
参考文献(References)
[1]TAN Y C, LEE K B, SONG H, et al. Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction[J]. Joule, 2020, 4(5): 1104-1120.
[2]DENG B W, HUANG M, ZHAO X L, et al. Interfacial electrolyte effects on electrocatalytic CO2 reduction[J]. ACS Catalysis, 2022, 12(1): 331-362.
[3]DE S K, WON D I, KIM J, et al. Integrated CO2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis[J]. Chemical Society Reviews, 2023, 52(16): 5744-5802.
[4]CHEN C B, LI Y F, YU S, et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons[J]. Joule, 2020,4(8): 1688-1699.
[5]CHEN H, YANG K, SHAO T Y, et al. Augmented CO2 utilization for acidic industrial-level CO2 electroreduction to nearunity CO[J]. Electrochimica Acta, 2023, 469: 143249.
[6]MARCANDALLI G, MONTEIRO M C O, GOYAL A, et al. Electrolyte effects on CO2 electrochemical reduction to CO[J].Accounts of Chemical Research, 2022, 55(14): 1900-1911.
[7]MONTEIRO M C O, DATTILA F, LÓPEZ N, et al. The role of cation acidity on the competition between hydrogen evolutionand CO2 reduction on gold electrodes[J]. Journal of the American Chemical Society, 2022, 144(4): 1589-1602.
[8]QIAO Y, LAI W C, HUANG K, et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid[J]. ACS Catalysis, 2022, 12(4): 2357-2364.
[9]LI Z Q, SUN B, XIAO D F, et al. Electron-rich Bi nanosheets promote CO2⁃formation for high-performance and pH-universal electrocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2023, 62(11): e202217569.
[10]VAN DAELE K, DE MOT B, PUPO M, et al. Sn-based electrocatalyst stability: a crucial piece to the puzzle for the electrochemical CO2 reduction toward formic acid[J]. ACS Energy Letters, 2021, 6(12): 4317-4327.
[11]ZHANG G, ZHAO Z J, CHENG D F, et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate[J]. Nature Communications, 2021, 12(1): 5745.
[12]TAN Z H, ZHANG J L, YANG Y S, et al. Alkaline ionic liquid microphase promotes deep reduction of CO2 on copper[J]. Journal of the American Chemical Society, 2023, 145(40): 21983-21990.
[13]ZHUAN M J, LIU Y, LU R H, et al. Promoting CO2 electroreduction to multi-carbon products by hydrophobicity-induced electro-kinetic retardation[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309875.
[14]LI Z, GE R X, SU J W, et al. Recent progress in low Pt content electrocatalysts for hydrogen evolution reaction[J]. Advanced Materials Interfaces, 2020, 7(14): 2000396.
[15]PIONTEK S, ANDRONESCU C, ZAICHENKO A, et al. Influence of the Fe:Ni ratio and reaction temperature on the efficiency of (FexNi1–x)9S8 electrocatalysts applied in the hydrogen evolution reaction[J]. ACS Catalysis, 2018, 8(2): 987-996.
[16]YU F Y, LANG Z L, YIN L Y, et al. Pt—O bond as an active site superior to Pt0 in hydrogen evolution reaction[J]. Nature Communications, 2020, 11(1): 490.
[17]QIN J J, WANG T, ZHAI M M, et al. Hydroxypillar[5]arene-confined silver nanocatalyst for selective electrochemical reduction of CO2 to ethanol[J]. Advanced Functional Materials, 2023, 33(29): 2300697.
[18]WANG M, PRESTON N, XU N N, et al. Promoter effects of functional groups of hydroxide-conductive membranes on advanced CO2 electroreduction to formate[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6881-6889.
[19]RAMDIN M, MORRISON A R T, DE GROEN M, et al. High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1834-1847.
[20]WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918.
[21]YANG S H, JUNG W, LEE H, et al. Membrane engineering reveals descriptors of CO2 electroreduction in an electrolyzer[J]. ACS Energy Letters, 2023, 8(4): 1976-1984.
[22]XING Z, HU L, RIPATTI D S, et al. Enhancing carbon dioxide gas⁃diffusion electrolysis by creating a hydrophobic catalyst microenvironment[J]. Nature Communications, 2021, 12(1): 136.
[23]SUN M X, CHENG J M, YAMAUCHI M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction[J]. Nature Communications, 2024, 15(1): 491.
[24]MA M, CLARK E L, THERKILDSEN K T, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs[J]. Energy & Environmental Science, 2020, 13(3): 977-985.
[25]XIE Y, OU P F, WANG X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media[J]. Nature Catalysis, 2022, 5: 564-570.
[26]HUANG J E, LI F W, OZDEN A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078.
[27]LI J N, KORNIENKO N. Electrocatalytic carbon dioxide reduction in acid[J]. Chem Catalysis, 2022, 2(1): 29-38.
[28]WU W X, XU L P, LU Q, et al. Addressing the carbonate issue: electrocatalysts for acidic CO2 reduction reaction[J]. Advanced Materials, 2024: 2312894.
[29]ZENG M, FANG W S, CEN Y R, et al. Reaction environment regulation for electrocatalytic CO2 reduction in acids[J].Angewandte Chemie International Edition, 2024, 63(26): e202404574.
[30]ZOU X Y, GU J. Strategies for efficient CO2 electroreduction in acidic conditions[J]. Chinese Journal of Catalysis, 2023,52: 14-31.
[31]YU X H, XU Y T, LI L, et al. Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies[J]. Nature Communications, 2024, 15(1): 1711.
[32]ZHANG L B, FENG J Q, LIU S J, et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction[J].Advanced Materials, 2023, 35(13): 2209590.
[33]CHEN W, CHEN R Z, JIANG Y H, et al. In-induced electronic structure modulations of Bi-O active sites for selective carbon dioxide electroreduction to liquid fuel in strong acid[J]. Small, 2024, 20(11): 2306795.
[34]ZHANG J, GUO C X, FANG S S, et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces[J]. Nature Communications, 2023, 14(1): 1298.
[35]JIANG Z N, REN S, CAO X, et al. pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide[J]. Angewandte Chemie, 2024, 136(32): e202408412.
[36]SUN Q, ZHAO Y, REN W H, et al. Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids[J]. Applied Catalysis B: Environmental, 2022, 304: 120963.
[37]JIANG Z, ZHANG Z S, LI H, et al. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes[J]. Advanced Energy Materials, 2023, 13(6): 2203603.
[38]LI H F, LI H B, WEI P F, et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni-N-C catalyst in a membrane electrode assembly electrolyzer[J]. Energy & Environmental Science, 2023, 16(4): 1502-1510.
[39]ZHANG J J, LIN G B, ZHU J, et al. Modulating electron density of Ni-N-C sites by N-doped Ni for industrial-level CO2 electroreduction in acidic media[J]. ChemSusChem, 2023, 16(24): e202300829.
[40]SHEN H F, JIN H Y, LI H B, et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide[J]. Nature Communications, 2023, 14(1): 2843.
[41]ZI X, ZHOU Y J, ZHU L, et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products[J]. Angewandte Chemie International Edition, 2023, 62(42): e202309351.
[42]MA Z S, YANG Z L, LAI W C, et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment[J]. Nature Communications, 2022, 13(1): 7596.
[43]ZHAO Y, HAO L, OZDEN A, et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment[J]. Nature Synthesis, 2023, 2: 403-412.
[44]XU K Q, LI J H, LIU F M, et al. Favoring CO intermediate stabilization and protonation by crown ether for CO2 electromethanation in acidic media[J]. Angewandte Chemie International Edition, 2023, 62(50): e202311968.
[45]QIN H G, DU Y F, BAI Y Y, et al. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte[J]. Nature Communications, 2023, 14(1): 5640.
[46]FAN M Y, HUANG J E, MIAO R K, et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis[J]. Nature Catalysis, 2023, 6: 763-772.
[47]WANG Z H, LI H D, DONG T, et al. Efficient acidic CO2 electroreduction to formic acid by modulating electrode structure at industrial-level current[J]. Chemical Engineering Journal, 2024, 489: 151238.
[48]WANG M L, WANG Z W, HUANG Z H, et al. Hydrophobic SiO2 armor: stabilizing Cuδ+ to enhance CO2 electroreduction toward C2+ products in strong acidic environments[J]. ACS Nano, 2024, 18(23): 15303-15311.
[49]FAN Q, BAO G X, CHEN X Y, et al. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering[J]. ACS Catalysis, 2022, 12(13): 7517-7523.