ISSN 1008-5548

CN 37-1316/TU

最新出版

用于酸性介质中电催化二氧化碳还原的颗粒催化剂设计策略综述

Review of design strategies for particle catalysts used in electrocatalytic CO2 reduction in acidic media


李小鹏1,2 ,胡维波2

1. 东华大学 材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620;2. 宁波工程学院 新能源学院,浙江 宁波 315336


引用格式:

李小鹏, 胡维波. 用于酸性介质中电催化二氧化碳还原的颗粒催化剂设计策略综述[J]. 中国粉体技术, 2025, 31(2): 1-10.

LI Xiaopeng, HU Weibo. Review of design strategies for particle catalysts used in electrocatalytic CO2 reduction in acidic media[J]. China Powder Science and Technology, 2025, 31(2): 1-10.

DOI:10.13732/j.issn.1008-5548.2025.02.007

收稿日期:2024-09-10,修回日期:2024-09-30,上线日期:2025-01-06。

基金项目:国家自然科学基金项目,编号:52272289。

第一作者简介:李小鹏(1986—),男,研究员,博士,博士生导师,上海市东方学者,研究方向为电催化。E-mail:xiaopeng. li@dhu. edu. cn。

通信作者简介:胡维波(1987—),女,副研究员,硕士生导师,研究方向为电催化。E-mail:huwb@nbut. edu. cn。


摘要:【目的】 梳理用于酸性介质中电催化二氧化碳还原反应(electrocatalytic CO2 reduction reaction, eCO2RR)的金属颗粒催化剂的设计策略,为酸性eCO2RR研究的进一步发展提供参考。【研究现状】 综述目前用于酸性eCO2RR的金属催化剂设计策略大体分为双金属催化、非金属元素掺杂、形貌调控、有机物修饰、无机层修饰金属颗粒策略;双金属催化策略是实现催化剂对反应底物及中间体选择性吸附的有效方法,更利于活性位的暴露,在实现大电流密度电解上有一定优势;非金属元素掺杂在优化中间体吸附、提高酸性eCO2RR产物选择性方面具有很大潜力;颗粒大小、晶界、空位及晶面等影响底物与中间体吸附强度的形貌因素都可对酸性eCO2RR产物分布产生影响;有机物修饰策略大多基于在金属催化剂表面富集碱金属离子这一原理,但是,高浓度碱金属盐易析出并沉积,影响催化稳定性;无机物修饰金属颗粒主要在金属颗粒外包裹疏水性碳层、SiO2等无机物,提高酸性eCO2RR选择性。【结论与展望】 近年来酸性eCO2RR研究已取得了一些成果,但仍存在众多挑战;催化剂颗粒的分级结构设计、界面、表面工程及电子结构调控等方法在降低eCO2RR过电位、提高反应速率、产物选择性及催化稳定性方面潜力巨大;为了促进酸性eCO2RR应用化发展,需要进一步明确特定产物的形成及调控机制,创新催化剂颗粒结构。

关键词:电催化CO2还原反应; 酸性介质; 表面微环境; 电子结构; 催化剂设计

Abstract

Significance To review the design strategies for metal particle catalysts used in the electrocatalytic CO2 reduction reaction (eCO2RR) in acidic media and to support further development of acidic eCO2RR research.

Progress This review summarizes recent reports on the structural design methods of catalyst particles for acidic eCO2RR. The current design methods for metal catalysts used in acidic eCO2RR can be broadly categorized into organic modification, bimetallic catalysis, non-metal element doping, inorganic layer modification, and morphology control. The increased concentration of H+ in acidic electrolytes raises the surface-adsorbed H+ (*H) ratio on the electrode, enhancing hydrogen evolution reaction (HER) kinetics, which in turn leads to poor product selectivity and low activity in acidic eCO2RR. Reducing the local H+ concentration on the electrode surface or increasing the adsorption selectivity of the electrode material for CO2 and intermediates are potential methods for promoting acidic eCO2RR.

Conclusions and Prospects In 2021, acidic eCO2RR was first proposed. Over the past few years, some catalysts have achieved high product selectivity in acidic eCO2RR, yet significant challenges remain:1) A method that simultaneously achieves high selectivity, high reaction rates, and high stability in acidic eCO2RR is still lacking. Current designs for acidic catalysts often rely on alkali metal ions (e.g., K⁺) to suppress HER and activate CO2. However, these designs typically require the addition of high concentrations of alkali metal salts, which can lead to salt deposition, impairing gas diffusion and catalytic stability. Additionally, non-precious metal catalysts tend to dissolve in acidic media, resulting in active site loss. Encapsulating the exterior of metal particles with suitable organic or inorganic layers can improve catalytic stability to some extent but may block active sites, thereby reducing the conversion rate.2) The selectivity for single multi-electron transfer products in acidic eCO2RR needs improvement. While some catalysts exhibit high selectivity for acidic eCO2RR products, these products are primarily limited to CO, formic acid, and mixed C2+ products (e.g., ethanol, acetic acid, ethylene, and propanol). The selectivity for single multi-electron transfer products, such as ethylene, ethanol, or acetic acid, is much lower in acidic eCO2RR compared to neutral or alkaline eCO2RR. The formation mechanisms of multi-electron transfer products in acidic eCO2RR may differ from those in neutral or alkaline eCO2RR and require further exploration and elucidation.3) Despite numerous studies on catalyst particles with excellent eCO2RR performance in recent years, most catalysts have the disadvantages of complex synthesis processes, limited production scalability, and inconsistent performance reproducibility. Developing efficient, easy-to-operate, and scalable synthesis methods for catalysts is a critical step toward the industrial application of eCO2RR.4) Improvements in eCO2RR electrolyzers are urgently needed. In addition to developing high-performance catalysts that can be produced at scale, advancements in electrolyzer design and technology are equally important for the practical application of eCO2RR.

Keywords: electrocatalytic CO2 reduction reaction; acidic media; surface microenvironment; electronic structure; catalyst design


参考文献(References)

[1]TAN Y C, LEE K B, SONG H, et al. Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction[J]. Joule, 2020, 4(5): 1104-1120.

[2]DENG B W, HUANG M, ZHAO X L, et al. Interfacial electrolyte effects on electrocatalytic CO2 reduction[J]. ACS Catalysis, 2022, 12(1): 331-362.

[3]DE S K, WON D I, KIM J, et al. Integrated CO2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis[J]. Chemical Society Reviews, 2023, 52(16): 5744-5802.

[4]CHEN C B, LI Y F, YU S, et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons[J]. Joule, 2020,4(8): 1688-1699.

[5]CHEN H, YANG K, SHAO T Y, et al. Augmented CO2 utilization for acidic industrial-level CO2 electroreduction to nearunity CO[J]. Electrochimica Acta, 2023, 469: 143249.

[6]MARCANDALLI G, MONTEIRO M C O, GOYAL A, et al. Electrolyte effects on CO2 electrochemical reduction to CO[J].Accounts of Chemical Research, 2022, 55(14): 1900-1911.

[7]MONTEIRO M C O, DATTILA F, LÓPEZ N, et al. The role of cation acidity on the competition between hydrogen evolutionand CO2 reduction on gold electrodes[J]. Journal of the American Chemical Society, 2022, 144(4): 1589-1602.

[8]QIAO Y, LAI W C, HUANG K, et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid[J]. ACS Catalysis, 2022, 12(4): 2357-2364.

[9]LI Z Q, SUN B, XIAO D F, et al. Electron-rich Bi nanosheets promote CO2⁃formation for high-performance and pH-universal electrocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2023, 62(11): e202217569.

[10]VAN DAELE K, DE MOT B, PUPO M, et al. Sn-based electrocatalyst stability: a crucial piece to the puzzle for the electrochemical CO2 reduction toward formic acid[J]. ACS Energy Letters, 2021, 6(12): 4317-4327.

[11]ZHANG G, ZHAO Z J, CHENG D F, et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate[J]. Nature Communications, 2021, 12(1): 5745.

[12]TAN Z H, ZHANG J L, YANG Y S, et al. Alkaline ionic liquid microphase promotes deep reduction of CO2 on copper[J]. Journal of the American Chemical Society, 2023, 145(40): 21983-21990.

[13]ZHUAN M J, LIU Y, LU R H, et al. Promoting CO2 electroreduction to multi-carbon products by hydrophobicity-induced electro-kinetic retardation[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309875.

[14]LI Z, GE R X, SU J W, et al. Recent progress in low Pt content electrocatalysts for hydrogen evolution reaction[J]. Advanced Materials Interfaces, 2020, 7(14): 2000396.

[15]PIONTEK S, ANDRONESCU C, ZAICHENKO A, et al. Influence of the Fe:Ni ratio and reaction temperature on the efficiency of (FexNi1x9S8 electrocatalysts applied in the hydrogen evolution reaction[J]. ACS Catalysis, 2018, 8(2): 987-996.

[16]YU F Y, LANG Z L, YIN L Y, et al. Pt—O bond as an active site superior to Pt0 in hydrogen evolution reaction[J]. Nature Communications, 2020, 11(1): 490.

[17]QIN J J, WANG T, ZHAI M M, et al. Hydroxypillar[5]arene-confined silver nanocatalyst for selective electrochemical reduction of CO2 to ethanol[J]. Advanced Functional Materials, 2023, 33(29): 2300697.

[18]WANG M, PRESTON N, XU N N, et al. Promoter effects of functional groups of hydroxide-conductive membranes on advanced CO2 electroreduction to formate[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6881-6889.

[19]RAMDIN M, MORRISON A R T, DE GROEN M, et al. High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1834-1847.

[20]WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918.

[21]YANG S H, JUNG W, LEE H, et al. Membrane engineering reveals descriptors of CO2 electroreduction in an electrolyzer[J]. ACS Energy Letters, 2023, 8(4): 1976-1984.

[22]XING Z, HU L, RIPATTI D S, et al. Enhancing carbon dioxide gas⁃diffusion electrolysis by creating a hydrophobic catalyst microenvironment[J]. Nature Communications, 2021, 12(1): 136.

[23]SUN M X, CHENG J M, YAMAUCHI M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction[J]. Nature Communications, 2024, 15(1): 491.

[24]MA M, CLARK E L, THERKILDSEN K T, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs[J]. Energy & Environmental Science, 2020, 13(3): 977-985.

[25]XIE Y, OU P F, WANG X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media[J]. Nature Catalysis, 2022, 5: 564-570.

[26]HUANG J E, LI F W, OZDEN A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078.

[27]LI J N, KORNIENKO N. Electrocatalytic carbon dioxide reduction in acid[J]. Chem Catalysis, 2022, 2(1): 29-38.

[28]WU W X, XU L P, LU Q, et al. Addressing the carbonate issue: electrocatalysts for acidic CO2 reduction reaction[J]. Advanced Materials, 2024: 2312894.

[29]ZENG M, FANG W S, CEN Y R, et al. Reaction environment regulation for electrocatalytic CO2 reduction in acids[J].Angewandte Chemie International Edition, 2024, 63(26): e202404574.

[30]ZOU X Y, GU J. Strategies for efficient CO2 electroreduction in acidic conditions[J]. Chinese Journal of Catalysis, 2023,52: 14-31.

[31]YU X H, XU Y T, LI L, et al. Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies[J]. Nature Communications, 2024, 15(1): 1711.

[32]ZHANG L B, FENG J Q, LIU S J, et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction[J].Advanced Materials, 2023, 35(13): 2209590.

[33]CHEN W, CHEN R Z, JIANG Y H, et al. In-induced electronic structure modulations of Bi-O active sites for selective carbon dioxide electroreduction to liquid fuel in strong acid[J]. Small, 2024, 20(11): 2306795.

[34]ZHANG J, GUO C X, FANG S S, et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces[J]. Nature Communications, 2023, 14(1): 1298.

[35]JIANG Z N, REN S, CAO X, et al. pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide[J]. Angewandte Chemie, 2024, 136(32): e202408412.

[36]SUN Q, ZHAO Y, REN W H, et al. Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids[J]. Applied Catalysis B: Environmental, 2022, 304: 120963.

[37]JIANG Z, ZHANG Z S, LI H, et al. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes[J]. Advanced Energy Materials, 2023, 13(6): 2203603.

[38]LI H F, LI H B, WEI P F, et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni-N-C catalyst in a membrane electrode assembly electrolyzer[J]. Energy & Environmental Science, 2023, 16(4): 1502-1510.

[39]ZHANG J J, LIN G B, ZHU J, et al. Modulating electron density of Ni-N-C sites by N-doped Ni for industrial-level CO2 electroreduction in acidic media[J]. ChemSusChem, 2023, 16(24): e202300829.

[40]SHEN H F, JIN H Y, LI H B, et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide[J]. Nature Communications, 2023, 14(1): 2843.

[41]ZI X, ZHOU Y J, ZHU L, et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products[J]. Angewandte Chemie International Edition, 2023, 62(42): e202309351.

[42]MA Z S, YANG Z L, LAI W C, et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment[J]. Nature Communications, 2022, 13(1): 7596.

[43]ZHAO Y, HAO L, OZDEN A, et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment[J]. Nature Synthesis, 2023, 2: 403-412.

[44]XU K Q, LI J H, LIU F M, et al. Favoring CO intermediate stabilization and protonation by crown ether for CO2 electromethanation in acidic media[J]. Angewandte Chemie International Edition, 2023, 62(50): e202311968.

[45]QIN H G, DU Y F, BAI Y Y, et al. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte[J]. Nature Communications, 2023, 14(1): 5640.

[46]FAN M Y, HUANG J E, MIAO R K, et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis[J]. Nature Catalysis, 2023, 6: 763-772.

[47]WANG Z H, LI H D, DONG T, et al. Efficient acidic CO2 electroreduction to formic acid by modulating electrode structure at industrial-level current[J]. Chemical Engineering Journal, 2024, 489: 151238.

[48]WANG M L, WANG Z W, HUANG Z H, et al. Hydrophobic SiO2 armor: stabilizing Cuδ+ to enhance CO2 electroreduction toward C2+ products in strong acidic environments[J]. ACS Nano, 2024, 18(23): 15303-15311.

[49]FAN Q, BAO G X, CHEN X Y, et al. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering[J]. ACS Catalysis, 2022, 12(13): 7517-7523.