ISSN 1008-5548

CN 37-1316/TU

  
最新出版

影响砂砾土堆积角形成的离散元关键参数

Key discrete element parameters influencing angle of repose formation of gravel soil


刘 佳1 ,连 峰2 ,刘 治2 ,孔令岑1 ,候 召1 ,鲁嘉祺1 ,杨 臻1 ,张 炯1

1. 山东大学 土建与水利学院,山东 济南 250061;2. 山东省建筑科学研究院有限公司,山东 济南 250031


引用格式:

刘佳,连峰,刘治,等. 影响砂砾土堆积角形成的离散元关键参数[J]. 中国粉体技术,2025,31(1):1-12.

LIU Jia, LIAN Feng, LIU Zhi, et al. Key discrete element parameters influencing angle of repose formation of gravel soil[J].China Powder Science and Technology,2025,31(1):1−12.

DOI:10.13732/j.issn.1008-5548.2025.01.009

收稿日期:2024-05-28,修回日期:2024-09-05,上线日期:2024-10-14。

基金项目:国家自然科学基金项目,编号 :52078279;国家重点研发计划项目,编号:2022YFB2601900;山东省重大科技创新项目重点研发计划,编号:2021CXGC011205。

第一作者简介:刘佳(2001—),男,硕士研究生,研究方向为土壤颗粒仿真参数表征。E-mail:2022150029@sdu. edu. cn。

通信作者简介:张炯(1980—),男,博士,教授,博士生导师,研究方向为透水路面孔隙堵塞防治技术。E-mail:jiongzhang@sdu. edu. cn。


摘要:【目的】 明确影响砂砾土堆积角形成的关键因素,分析Johnson-Kendall-Roberts(JKR)表面能、碰撞恢复系数、静摩擦、滚动摩擦系数等因素对砂砾土堆积角的影响,实现对砂砾土堆积角的精确预测。【方法】 采用Generic EDEM Mate⁃rial Model Database(GEMM)数据库获取仿真试验关键参数,并使用 Box-Behnken 中心组合设计试验方案;基于“Hertz Mindlin with JKR”接触模型对砂砾土进行堆积角仿真试验;利用 MATLAB函数曲线读取堆积形态轮廓线的边界颗粒坐标,拟合堆积斜面轮廓线。【结果】 实际最优因素参数组合为砂砾土颗粒间JKR表面能、滚动摩擦系数、静摩擦系数和恢复系数依次分别为0. 05 J/m2、0. 1、0. 39、0. 45; EDEM仿真试验所得砂砾土堆积角为35. 41°,与堆积角测量值(35. 11°)误差为 0. 854%,且颗粒堆积形态无明显差异。【结论】 砂砾土颗粒的 JKR 表面能和滚动摩擦系数是影响堆积角的重要因素。

关键词:离散元;砂砾土颗粒;颗粒重构;接触模型;数值模拟

Abstract

Objective To identify key factors influencing the angle of repose of gravel soil by analyzing the impact of Johnson-Kendall-Roberts (JKR) surface energy, restitution coefficient, static friction coefficient, and rolling friction coefficient, aiming to achieve a precise prediction of the angle.

Methods The Generic EDEM Material Model (GEMM) database was used to obtain key parameters for the EDEM model. A Box-Behnken central composite design was employed in the experimental scheme. Discrete element simulations of the gravel soil’s angle of repose were conducted using the Hertz-Mindlin with JKR contact model. MATLAB functions were utilized to extract the boundary particle coordinates from the pile profile and fit the slope profile.

Results and Discussion The optimal parameter combination for simulated gravel soil particles was found to be: JKR surface energy of 0. 05, rolling friction coefficient of 0. 1, static friction coefficient of 0. 39, and restitution coefficient of 0. 45. With this combination, the EDEM simulation yielded a gravel soil angle of repose of 35. 41°, with an average angular error of only 0. 854% compared to the measured value of 35. 11°. No significant difference was observed in the particle pile morphology.

Conclusion The study results indicate that JKR surface energy and rolling friction coefficient are significant factors affecting the angle of repose. These results provide valuable references for engineering applications.

Keywords:discrete element; gravel soil particle; particle reconstruction; contact model; MATLAB fitting


参考文献(References)

[1]HE Z, XIANG D, LIU Y. Triaxial creep test and particle flow simulation of coarse-grained soil embankment filler[J]. Frontiers in Earth Science (Lausanne),2020(8):62-75.

[2]谢东鹏. 加筋泥质粉砂岩粗粒土路用工程特性研究[D]. 昆明:昆明理工大学,2022.

XIE D P. Study on engineering characteristics of reinforced argillaceous siltstone coarse-grained soil for road use [D]. Kunming: Kunming University of Science and Technology,2022.

[3]WEI Y, WANG D, LI J, et al. Effects of soil conditioning on characteristics of a clay−sand−gravel mixed soil based on laboratory test [J]. Applied Sciences,2020,10(9):102-120.

[4]陈国兴,孙苏豫,吴琪,等. 基于剪切波速的砂砾土地震液化评价新方法[J]. 岩土工程学报,2022,44(10):10-19.

CHEN G X, SUN S Y, WU Q, et al. A new evaluation method of seismic liquefaction of gravel soil based on shear wave velocity [J]. Journal of Geotechnical Engineering,2022,44(10):10-19.

[5]夏鹏. 砂砾土动力行为特征与抗液化强度评价研究[D]. 杭州:浙江大学,2022.

XIA P. Study on dynamic behavior characteristics and liquefaction resistance evaluation of sandy soil [D]. Hangzhou: Zhejiang University,2022.

[6]王江永,武传龙. 天然砂砾土在高速公路路面底基层施工中的应用[J]. 交通世界(中旬刊),2021(3):41-42.

WANG J Y, WU C L. The application of natural gravel soil in the construction of expressway pavement subbase[J]. Communications World (Mid-term Journal),2021(3):41-42.

[7]朱碧堂, 余金, 王凌, 等. 富水砾砂-泥质粉砂岩复合地层渣土改良试验研究[J]. 土木与环境工程学报(中英文),2022,44(5):9-19.

ZHU B T, YU J, WANG L, et al. Experimental study on improvement of muck in water-rich gravel sand-argillaceous siltstone composite stratum [J]. Journal of Civil and Environmental Engineering (in Chinese and English),2022,44(5):9-19.

[8]MEI H, SATVATI S, LENG W. Experimental study on permanent deformation characteristics of coarse-grained soil under repeated dynamic loading[J]. Railway Engineering Science,2021,29(1):94-107.

[9]潘家军,孙向军,左永振,等. 骨架孔隙比对粗粒土强度变形特性的影响研究[J]. 岩土力学,2023,44(8):45-68.

PAN J J, SUN X J, ZUO Y Z, et al. Study on the influence of skeleton void ratio on strength and deformation characteristics of coarse-grained soil [J]. Geotechnical Mechanics,2023,44(8):45-68.

[10]MAJMUDAR T, BEHRINGER R. Contact force measurements and stress-induced anisotropy in granular materials[J].Nature,2005,435(7045):1079-1082.

[11]LI J, XIE S, LIU F, et al. Calibration and testing of discrete element simulation parameters for sandy soils in potato growing areas [J]. Applied Sciences,2022,12(19):77-89.

[12]XIA T Y. Measurement and calibration of the discrete element parameters of wet bulk coal[J]. Measurement,2019,142:84-95.

[13]葛庭燧. 固体内耗理论基础:晶界弛豫与晶界结构[M]. 北京:北京大学出版社,2014:23-32.

GE T Y. Theoretical basis of solid internal friction: grain boundary relaxation and grain boundary structure[M]. Beijing:Peking University Publishing House,2014:23-32.

[14]XU Y. Numerical simulation of direct shear test of rockfill based on particle breaking[J]. Acta Geotechnica,2021,16(10):33-41.

[15]ROESSLER T, KATTERFELD A. DEM parameter calibration of cohesive bulk materials using a simple angle of repose test[J]. Particuology,2019,45:105-115.

[16]吴琪, 赵凯, 王秋哲, 等. 砂砾土颗粒三维形态分布特征及其离散元模拟[J]. 应用基础与工程科学学报, 2021,29(2):10-18.

WU Q, ZHAO K, WANG Q Z, et al. Three-dimensional morphological distribution characteristics of sandy soil particles and its discrete element simulation [J]. Journal of Basic Science and Engineering,2021,29(2):10-18.

[17]LIU X, ZOU D, LIU J, et al. Predicting the small strain shear modulus of coarse-grained soils[J]. Soil Dynamics and Earthquake Engineering,2021,141:25-38.

[18]MA H, WANG X, LI B, et al. Calibration of discrete element microparameters of coal based on the response surface method[J]. Particulate Science and Technology,2022,40(5):543-557.

[19]武涛, 黄伟凤, 陈学深, 等. 考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J]. 华南农业大学学报, 2017,38(3):93-98.

WU T, HUANG W F, CHEN X S, et al. Parameter calibration of discrete element model of cohesive soil considering the cohesive force between particles [J]. Journal of South China Agricultural University,2017,38(3):93-98.

[20]问小江,方飞飞,刘应科,等. 基于煤粉堆积角的EDEM颗粒接触参数标定[J]. 中国安全科学学报, 2020, 30(7):114-119.

WEN X J, FANG F F, LIU Y K, et al. Calibration of contact parameters of EDEM particles based on pulverized coal accumulation angle [J]. China Safety Science Journal,2020,30(7):114-119.

[21]MOUSAVIRAAD M, TEKESTE M Z, ROSENTRATER K A. Calibration and validation of a discrete element model of corn using grain flow simulation in a commercial screw grain auger [J]. Transactions of the ASABE,2017,60(4):143-155.

[22]ZHOU L, GAO J, LI Q, et al. Numerical simulation analysis of interaction model between track and sandy road based on discrete element method [C]// 2019 25th International Conference on Automation and Computing (ICAC): Chinese Automation and Computing Society in the UK-CACSUK. Beijing :National Library Press,2019:61-76.

[23]YAN B, REGUEIRO R. Influence of particle shape on microstructure of granular materials under gravity [J]. Journal of Engineering Mechanics,2021,147(11):167-180.

[24]ZHANG Y, LIU S, LU Y, et al. Experimental study of the mechanical behavior of frozen clay-gravel composite[J]. Cold Regions Science and Technology,2021,189:73-85.

[25]ZHANG L R. A refined JKR model for adhesion of a rigid sphere on a soft elastic substrate [J]. Journal of Applied Mechanics: Transactions of the ASME,2019,86(5):63-77.