ISSN 1008-5548

CN 37-1316/TU

最新出版

铍铝合金的研究现状与应用
Research status and applications of beryllium-aluminum alloys

陈凯旋1 ,王为民1 ,曹裕栋2 ,魏程浩1 ,王自东1,3

1. 北京科技大学 材料科学与工程学院,北京 100083;2. 中国航天科工二院 北京遥感设备研究所,北京 100854;

3. 北京科技大学 新金属材料国家重点实验室,北京 100083


引用格式:

陈凯旋,王为民,曹裕栋,等. 铍铝合金的研究现状与应用[J]. 中国粉体技术,2025,31(1):1-16.

CHEN Kaixuan, WANG Weimin, CAO Yudong, et al. Research status and applications of beryllium-aluminum alloys[J].China Powder Science and Technology,2025,31(1):1−16.

DOI:10.13732/j.issn.1008-5548.2025.01.014

收稿日期:2024-08-11,修回日期:2024-09-13,上线日期:2024-10-12。

基金项目:国家自然科学基金青年科学基金项目,编号:52101119;北京市自然科学基金青年科学基金项目,编号:2214072;第七届中国科协青年人才托举工程项目,编号:2021QNRC001。

第一作者简介:陈凯旋(1991—),男,副教授,博士,硕士生导师,中国科协青年人才托举工程人才,研究方向为先进金属材料。E-mail:chenkxustb@126. com。

通信作者简介:王自东(1964—),男,教授,博士,研究方向为金属加工理论和技术。E-mail: wangzd@mater. ustb. edu. cn。


摘要:【目的】 梳理铍铝(Be-Al)合金的研究现状,为Be-Al合金的研发和应用提供参考。【研究现状】综述Be-Al合金的特性、国内外发展现状、制备方法、元素添加对性能的影响以及应用领域; Be和Al的互溶度低,导致Be-Al合金具有独特的显微组织和金属基复合材料特性;阐明粉末冶金、熔模精密铸造等铍铝合金的主流制备工艺;激光立体成型、自排气压力浸透法制备高性能 Be-Al合金的新型工艺;自排气压力浸透法强化效率增量超过 100%;通过合金化处理,如引入锗 Ge、铜 Cu、钪 Sc、锆 Zr等元素,可以有效优化 Be-Al合金的微观结构,提升力学性能。Be-Al合金已广泛应用于飞行器构件、光学系统。【结论与展望】我国高端Be合金的生产能力亟待提升,未来需加大对Be-Al合金研发和制备工艺优化的投入,推动Be-Al合金在航空航天、国防科技、光学系统等高端领域的研发和应用。

关键词:铍;铍铝合金;材料成形;合金化;铍储量;航空航天


Abstract

Significance Beryllium-aluminum (Be-Al) alloys have garnered attention due to their outstanding properties, including excellent specific strength, high specific stiffness, superior thermal stability, exceptional toughness, and strong corrosion resistance.These alloys combine the high elastic modulus and low density of Be with the processing ease and high toughness of Al, making them ideal materials for rocket and aircraft manufacturing. This paper reviews the current research status of Be-Al alloys and provides valuable insights for their development and application.

Progress The article summarizes the characteristics, development status, preparation methods, the impact of element additions on properties, and application areas of Be-Al alloys. The low mutual solubility between Be and Al gives Be-Al alloys a unique microstructure and metal matrix composite characteristics. Large-scale production of Be-Al alloys has been achieved abroad,and research on their excellent physical and chemical properties has deepened. Mainstream preparation processes such as powder metallurgy and investment casting are discussed, along with new techniques for producing high-performance Be-Al alloys,such as laser stereolithography and self-exhaust pressure infiltration. The latter has shown a strengthening enhancement of over 100%. Alloying with elements like germanium (Ge), copper (Cu), scandium (Sc), and zirconium (Zr) can effectively optimize the microstructure of Be-Al alloys, improving their mechanical properties. Be-Al alloys are now widely used in aerospace components and optical systems.

Conclusions and Prospects China’s production capacity for high-end beryllium alloys needs improvement. In the future, more investment in research and optimization of Be-Al alloy preparation processes is needed to advance their applications in aerospace, defense technology, and optical systems. 1) Developing advanced Be powder and Be-Al alloy powder preparation techniques is critical for enhancing alloy performance and expanding their application range. 2) The self-exhaust pressure infiltration combined with hot extrusion has produced Be-Al alloys with excellent microstructure and performance. However, this process has not yet been scaled up for industrial production, requiring further refinement to support Be-Al alloy development. 3)Developing environmentally friendly and efficient methods for Be resource utilization will reduce the cost of Be and its products,enhancing market competitiveness and driving the development of related industries. 4) Compared to aluminum alloy systems,alloying studies on Be-Al alloys are still relatively limited and lack in-depth theoretical research. 5) To promote the application of Be-Al alloys in China, breakthroughs are needed in material preparation, composition optimization, strengthening mechanisms, and precision forming technologies.

Keywords:beryllium; beryllium-aluminum alloy; materials forming; alloying; beryllium reserve; aerospace


参考文献(References)

[1]KUANG Z Y, XIA Y X, JU B Y, et al. Effect of interfacial BeO content on microstructure and mechanical properties of beryllium/aluminum composites[J]. Materials Science and Engineering: A,2024,893:146123.

[2]李笑, 刘志中, 王涛, 等. 铍及铍铝合金的研究及发展:中国铸造活动周论文集[C]. 沈阳:铸造杂志社(沈阳)有限公司,2021.

LI X, LIU Z Z, WANG T, et al. Research and development of beryllium and beryllium-aluminum alloys:Proceedings of the 2021 China Foundry Week[C]. Shenyang: Foundry Magazine (Shenyang) Co. , Ltd,2021.

[3]梅燕雄,裴荣富,魏然,等. 关键矿产与能源资源安全[J]. 中国矿业,2022,31(11):1-8.

MEI Y X, PEI R F, WEI R, et al. Critical minerals and energy resources security[J]. China Mining Magazine,2022,31(11):1-8.

[4]YU L B, WANG W Y, LI B Q, et al. Determination of homogenizing conditions and aging behaviors of cast 62Be37. 6 Al0.4Sc alloy[J]. Journal of Alloys and Compounds,2019,808:151742.

[5]邓伟,颜世强,谭洪旗,等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用,2023(1):148-154.

DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources,2023(1):148-154.

[6]MISHIN V V, SHISHOV I A, STOLYAROV O N, et al. Enhanced mechanical properties of hot-rolled beryllium foils[J].Materialia,2020,11:100726.

[7]XU Y Y, LIU S B, HE C H, et al. Reliability of MEMS inertial devices in mechanical and thermal environments: a review[J].Heliyon,2024,10(5): e27481.

[8]XU Q D, WEI Y Y, ZHANG P C, et al. A microcompression study on the mechanical properties and fracture behavior of Be/Al and BeAlSi10Mg alloys fabricated by laser solid forming[J]. Materials Science and Engineering: A,2022,836:142715.

[9]SUN Y T, HAN Z C, KUANG Z Y, et al. Recycling of beryllium swarf for the preparation of Be/Al composites with high mechanical properties by pressure infiltration method[J]. Journal of Materials Research and Technology,2024,29:3967-3975.

[10]LI J Y, XIE Y, YANG Y Q, et al. Research progress of low density and high stiffness of Be/Al alloy fabricated by investment casting[J]. Metals,2022,12(8):1379.

[11]REHAN M, MANSOOR M. Application of MEMS in safety and arming devices: an overview[J]. Microsystem Technologies,2021,27(10):3599-3610.

[12]MINISSALE M, CANONVILLE C L, PARDANAUD C, et al. The role of defects, deuterium, and surface morphology on the optical response of beryllium[J]. Nuclear Fusion,2022,62(5):056012.

[13]王战宏,王莉,买学锋,等. 铍铝合金结构材料制造研究[J]. 采矿技术,2006,6(4):16-18.

WANG Z H, WANG L, MAI X F, et al. Study on the manufacture of beryllium aluminum alloy structural materials[J]Mining Technology,2006,6(4):16-18.

[14]吴恒,姚栋嘉,方鹏,等. 高性能铍铝合金及其制备方法: CN104726756B[P]. 2017-04-12.

WU H, YAO D J, FANG P, et al. High-performance beryllium-aluminum alloy and its preparation method: CN104726756B[P]. 2017-04-12.

[15]NAKAMICHI M, KIM J-H, NAKAMURA M M, et al. Beryllium and its alloys as neutron multiplying materials[M]. England: Elsevier,2020:203-250.

[16]TSAVALAS P, LAGOYANNIS A, MERGIA K, et al. Differential cross sections of the deuteron reactions on beryllium at energies and angles suitable for nuclear reaction analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2020,479:205-210.

[17]XIE Y, WANG D X, YIN Y J, et al. Investigation on the interface properties of Be-Al alloys via first-principles calculation[J]. Materials Today Communications,2024,40:109972.

[18]XU D M, QIN G W, LI F. Research progress of beryllium and beryllium-containing materials at home and abroad[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1212-1223.

[19]HARDESTY R, PARKER K. Fabrication of stable lightweight Be-38Al optics and optical support structures:Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems II. SPIE[C]. California:Society of Photo-Optical Instrumentation Engineers,2015.

[20]KOVACS C J, BULLARD T J, HAUGAN T J, et al. Cryogenic electrical properties of an aluminum-beryllium nanocomposite[J]. IEEE Transactions on Applied Superconductivity,2023,33(5):1-6.

[21]张健康,李燕,王战宏,等 . 粉末冶金铍铝合金的高低温力学性能研究[J]. 稀有金属与硬质合金,2017,45(4):71-75.

ZHANG J K, LI Y, WANG Z H, et al. Study on high and low temperature mechanical properties of powder metallurgy BeAl alloy[J]. Rare Metals and Cemented Carbides,2017,45(4):71-75.

[22]DETROIS M. Advancing development and application of superalloys[J]. Journal of Metals,2020,72(5):1783-1784.

[23]DOU Z Y, MA C, ZHAO Y W, et al. Elevated temperature compressive behavior of a beryllium-aluminum casting alloy[J].Materials Letters,2018,229:89-92.

[24]HE X H, JIANG C L, LIAO Y C, et al. Hot compression behaviors and microstructural evolution of casting Be-38%Al[J].Materials Letters,2022,316:132016.

[25]王晶, 彭仕先, 王旻, 等. 基于球形铍粉制备的Be-50Al合金热变形行为研究[J]. 稀有金属材料与工程, 2023,52(8):2901-2908.

WANG J, PENG S X, WANG M, et al. Mechanical properties and thermal deformation behavior of Be-50Al alloy prepared from spherical beryllium powder[J]. Rare Metal Materials and Engineering,2023,52(8):2901-2908.

[26]夏一骁,匡泽洋,鞠渤宇,等. 铍铝合金制备技术与性能设计研究进展[J]. 铸造技术,2023,44(6):514-524.

XIA Y X, KUANG Z Y, JU B Y, et al. Research progress on fabrication technology and property design of beryllium aluminum alloys[J]. Casting Technology,2023,44(6):514-524.

[27]吕一格,赵志灵,代彦明,等. 二次热压对粉末冶金铍铝合金显微组织与力学性能的影响[J]. 稀有金属与硬质合金,2020,48(5):68-71.

LU Y G, ZHAO Z L, DAI Y M, et al. Effect of secondary hot pressing on microstructure and mechanical properties of BeAl alloy prepared by powder metallurgy[J]. Rare Metals and Cemented Carbides,2020,48(5):68-71.

[28]XU Q D, YANG L, HE S X, et al. Three-dimensional microstructure and solidification behavior in laser remelting of beryllium-aluminum alloy[J]. Materials Letters,2020,274:127963.

[29]HASHIGUCHI D. Beryllium mirrors for space telescopes[M]. Ohio:ASM International Publication,2015.

[30]PENG S X, WANG J, WANG M, et al. Investigation on the compression properties of semi-solid Be-Al alloy[J]. Materials Letters,2022,321:132431.

[31]CONTRERAS F, TRILLO E A, MURR L E. Friction-stir welding of a beryllium-aluminum powder metallurgy alloy[J].Journal of Materials Science,2002,37(1):89-99.

[32]LIU X D, ZHANG P C, XU Q D, et al. Aging behavior of Be/6061Al composite fabricated by hot isostatic pressing technique[J]. Journal of Alloys and Compounds,2018,764:460-466.

[33]徐庆东. 铍铝合金的激光重熔与增材制造研究[D]. 绵阳:中国工程物理研究院,2020.

XU Q D. Research on laser remelting and additive manufacturing of beryllium-aluminum alloy[D]. Mianyang: China Academy of Engineering Physics,2020.

[34]余良波. 铸造Be-Al-Sc系合金设计制备与组织性能研究[D]. 绵阳:中国工程物理研究院,2020.

YU L B. Research on design preparation and microstructure and properties of cast Be-Al-Sc alloys[D]. Mianyang: China Academy of Engineering Physics,2020.

[35]XIE Y, YIN Y J, WANG D X, et al. High ductility of Be-Al alloy fabricated by investment casting[J]. Journal of Materials Research and Technology,2024,29:789-802.

[36]YU L B, WANG W Y, SU B, et al. Characterizations on the microstructure and micro-mechanics of cast Be-Al-0.4Sc-0. 4Zr alloy prepared by vacuum induction melting[J]. Materials Science and Engineering: A,2019,744:512-524.

[37]XU Q D, LUO Y, LIU X D, et al. Microstructural evolution and hardness of as-cast Be-Al-Sc-Zr alloy processed by laser surface remelting[J]. Chinese Journal of Aeronautics,2021,34(8):131-142.

[38]XU Q D, ZHANG P C, YANG L, et al. Microstructure and mechanical properties of Be-Al alloy fabricated by laser solid forming[J]. Materials Science and Engineering: A,2021,799:140335.

[39]KUANG Z Y, YANG W S, JU B Y, et al. Achieving ultra-high strength in Be/Al composites by self-exhaust pressure infiltration and hot extrusion process[J]. Materials Science and Engineering: A,2023,862:144473.

[40]XIE Y, YIN Y J, WANG D X, et al. Effects of Ag, Co, and Ge additions on microstructure and mechanical properties of Be-Al alloy fabricated by investment casting[J]. China Foundry,2022,19(5):435-442.

[41]李军义,谢垚,王东新,等 . 热等静压对铍铝合金组织及性能的影响[J]. 稀有金属与硬质合金,2018,46(1):65-69.

LI J Y, XIE Y, WANG D X, et al. The influence of hot isostatic pressing on the microstructure and properties of beryllium aluminum alloys[J]. Rare Metals and Hard Alloys,2018,46(1):65-69.

[42]KUANG Z Y, HAN Z C, WANG C J, et al. Effects of Cu, Si and Mg additions on the interfacial properties and mechanical properties of Be/Al composites: first-principles calculations and experimental studies[J]. Surfaces and Interfaces,2024,46:103971.

[43]YU L B, WANG J, WANG Z H, et al. Sc and Sc-Zr effects on microstructure and mechanical properties of Be-Al alloy[J]. Materials Science and Technology,2018,34(4):480-486.

[44]PARSONAGE T B, BENOIT J. Advances in beryllium and AlBeMet optical materials[J]. Optomechanical Design and Engineering,2002:45:222-229.

[45]SONG S G, GAROSSHEN T J, NARDONE V C. Temperature induced worksoftening of Be/Al composite materials[J].Materials Science and Engineering: A,2000,282(1/2):67-73.

[46]郑莉芳,王晓刚,岳丽娜,等. 稀有轻金属铍及其合金的应用进展[J]. 稀有金属,2021,45(4):475-483.

ZHENG L F, WANG X G, YUE L N, et al. Advances in the application of rare light metal beryllium and its alloys[J]. Rare Metals,2021,45(4):457-483.

[47]ZHENG L F, WANG X G, YUE L N, et al. Progress in the application of rare light metal beryllium[J]. Materials Science Forum,2020,977:261-271