ISSN 1008-5548

CN 37-1316/TU

最新出版

纳米或超细WC-Co粉体制备过程强化研究进展

Research progress on enhanced preparation process of nano or ultra-fine WC-Co powder


潘 锋1,尚慧俊2,黎亨利3,杜 占4

1. 中国科学院过程工程研究所 介科学与工程全国重点实验室,北京 100190;2. 北京工业大学 材料科学与工程学院,北京100124;3. 石河子大学 化学化工学院,新疆 石河子 832003;4. 中铝环保节能集团有限公司,河北 雄安 050004


引用格式:

潘锋,尚慧俊,黎亨利,等. 纳米或超细WC-Co粉体制备过程强化研究进展[J]. 中国粉体技术,2025,31(1):1-11.

PAN Feng, SHANG Huijun, LI Hengli, et al. Research progress on enhanced preparation process of nano or ultra-fine WC-Co powder[J]. China Powder Science and Technology,2025,31(1):1−11.

DOI:10.13732/j.issn.1008-5548.2025.01.004

收稿日期:2024-06-28,修回日期:2024-10-09,上线日期:2024-10-18。

基金项目:国家自然科学基金项目,编号:22078326、21878305。

第一作者简介:潘锋(1981—),男,工学博士,副研究员,硕士生导师,主要从事流态化及过程强化、超细粉体制备及应用等方面的研究。E-mail: fpan@ipe. ac. cn。


摘要:【目的】以纳米或超细碳化钨钴WC-Co粉体为热喷涂原料,可有效解决机械零件的磨损和腐蚀问题,因此,本文主要对其制备过程强化的研究进展进行总结和分析。【研究现状】根据制备过程强化的方式和手段,归纳纳米或超细WC-Co的不同制备方法,剖析其反应路径,并分析总结钴Co在纳米或超细WC-Co粉体制备过程中的作用。纳米或超细WC-Co粉体制备过程的强化技术,主要包括机械作用力强化、原子或分子水平强化和采用气相碳源强化;制备过程的反应路径主要包括还原和碳化 2个阶段,主要存在 3种路径:碳化过程中形成碳化钨 WC和 η物相; WO3先被还原成钨W,再形成 η物相,最后进一步被碳化形成 WC-Co。还原碳化过程中不经历形成 η物相的过程。Co在纳米或超细 WC-Co粉体制备过程中具有催化、促进碳化、降低碳化温度和减小产物粒径的作用。【结论与展望】纳米或超细 WC-Co粉体的制备与应用可从以下几个方面展开:进一步揭示WC-Co粉体强化制备过程的机制、 Co-W-C的相互作用机制;缺碳η相在制备过程中的作用尚不清楚,其在制备过程中对 W、 Co、 C扩散的影响机制有待进一步分析;利用流体模拟软件模拟反应过程中的传热传质规律,建立反应动力学模型;采用强化制备手段得到复合粉体的热喷涂性能有待进一步研究。

关键词:硬质合金涂层;纳米或超细WC–Co;技术进展;反应路径


Abstract

Significance Using nano or ultra-fine tungsten carbide cobalt (WC-Co) powder as thermal spray material can effectively solve the wear and corrosion problems in mechanical parts. This paper summarizes and analyzes the research progress on enhancing the preparation process of such powders.

Progress Based on various enhancement methods and approaches, different preparation methods of nano or ultra-fine WC-Co powder are reviewed, and their reaction paths are analyzed. The role of cobalt (Co) in the preparation process of nano or ultrafine WC-Co powder is also discussed. Enhancement technologies for the preparation process mainly include mechanical force enhancement, atomic or molecular-level enhancement, and gas-phase carbon source enhancement. The reaction paths during the preparation process mainly involves two stages: reduction and carbonization. There are three paths:(1) tungsten carbide (WC) and η-phase are formed during carbonization;(2) tungsten trioxide (WO3) is first reduced to tungsten (W), then the η-phase is formed, followed by further carbonization to form WC-Co;(3) the reduction and carbonization process occurs without the formation of the η-phase. During the preparation of nano or ultra-fine WC-Co powder, Co plays the roles of catalysis, promoting carbonization, reducing the carbonization temperature, and decreasing the particle size of the product.

Conclusions and Prospects The preparation and application of nano or ultra-fine WC-Co powder can be further developed in the following areas. The mechanisms of the enhancement process in WC-Co powder preparation and the interaction mechanisms of Co-W-C should be further elucidated. The role of carbon-deficient η-phase in the preparation process remains unclear, and its impact on the diffusion mechanisms of W, Co, and C during preparation needs further analysis. By clarifying these mechanisms, the optimization of the preparation process can be guided, allowing for the control of the free carbon mass content within 0. 2%, and the production of composite powder with particle sizes under 100 nm. Moreover, the heat and mass transfer laws during the reaction process should be further examined. Using fluid simulation software, the heat and mass transfer processes between carbonized gas and solid raw materials in the reaction process can be simulated and analyzed, providing a basis for studying the reaction process mechanisms, optimizing the preparation process, and designing scalable reactors. The thermal spraying properties of composite powders also need to be further studied. It is necessary to apply the ultra-fine WC-Co powder prepared by relevant technical routes to the surface treatment of mechanical parts, testing the wear and corrosion resistance of the resulting coating, and using this performance data to refine the preparation process.

Keywords:cemented carbide coating; nano or ultra-fine WC-Co; technological progress; reaction paths


参考文献(References)

[1]向锦涛. WC/Co基热喷涂粉末与涂层制备及其性能的研究[D]. 长沙:湖南大学,2012.

XIANG J T. Study on preparation and properties of WC/Co-based thermal spray powder and coating[D]. Changsha: Hunan University,2012.

[2]丁彰雄,万文晨,赵辉,等. 热喷涂WC-Co复合涂层的研究现状及展望[J]. 热喷涂技术,2012,4(2):1-5,15.

DING Z X, WAN W C, ZHAO H, et al. Research progress and prospect of WC-Co composite coatings prepared[J]. ThermalSpray Technology,2012,4(2):1-5,15.

[3]KHANN A S, KUMARI S, KANUNGO S, et al. Hard coatings based on thermal spray and laser cladding[J]. International Journal of refractory Metals & Hard Materials,2009,27(2):485-491.

[4]郭圣达. 超细晶WC-Co复合粉短流程制备及其硬质合金的腐蚀行为[D]. 昆明:昆明理工大学,2018.

GUO S D. Short process preparation of ultrafine grained WC-Co composite powder and its corrosion behavior in hard alloys[D]. Kunming: Kunming University of Science and Technology,2018.

[5]HE R G, WANG J Y, HE M, et al. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide[J]. Ceramics International,2018,44(9):1-7.

[6]WU C H. Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide[J].International Journal of Refractory Metals & Hard Materials,2011,29(6):686-691.

[7]张秋和,谢中华,陈树茂,等. 超细碳化钨粉工业生产实践[J]. 中国钨业,2009,24(6):32-34.

ZHANG Q H, XIE Z H, CHEN S M, et al. On the industrial production practice of super-fine carbonization tungsten powder[J]. China Tungsten Industry,2009,24(6):32-34.

[8]CHEN W H, NAYAK P K, LIN H T, et al. Synthesis of nanostructured tungsten carbide via metal-organic chemical vapor deposition and carburization process[J]. International Journal of Refractory Metals & Hard Materials,2014,47(12):44-48.

[9]ZHU M, BAO X Y, YANG X P, et al. A novel method for direct synthesis of WC-Co nanocomposite powder[J]. Metallurgical and Materials Transactions: A. Physical Metallurgy and Materials Science,2011,42A(9):2930-2936.

[10]PAN Y F, XIONG H W, LI Z Y,et al. Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals & Hard Materials,2019,81:127-136.

[11]WANG X L, SONG X Y, LIU X M, et al. Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions[J]. Nanotechnology,2015,26(14):145705-145713.

[12]SHEN T T, XIAO D H, OU X Q, et al. Preparation of ultrafine WC-10Co composite powders by reduction and carbonization[J]. Journal of Central South University,2013,20(8):2090-2095.

[13]LIU W B, SONG X Y, ZHANG J X, et al. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions[J]. International Journal of Refractory Metals & Hard Materials,2009,27(1):115-120.

[14]PARK C, KIM J, KANG S. Effect of cobalt on the synthesis and sintering of WC-Co composite powders[J]. Journal of Alloys and Compounds,2018,76(25):564-571.

[15]LIN H, SUN J C, LI C H, et al. A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk[J]. Journal of Alloys and Compounds,2016,682(15):682,531-536.

[16]MARZIE M, RASOUL S M, BEHZAD S, et al. Acrylamide route for the co-synthesis of tungsten carbide-cobalt nanopowders with additives[J]. Ceramics International ,2016,42(8):9382-9386.

[17]RYU T, SOHN H Y, HWANG K S, et al. Chemical vapor synthesis and characterization of nanosized WC-Co composite powder and post-treatment[J]. Industrial & Engineering Chemistry Research ,2008,47(23):9384-9388.

[18]YANG Q M, YANG J G, YANG H L, et al. Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-HIP[J]. International Journal of Refractory Metals & Hard Materials,2017,62(B):104-109.

[19]YANG Q M, YANG J G, YANG H L, et al. Synthesis of ultrafine WC-Co composite powders under hydrogen atmosphere with in situ carbon via a one-step reduction-carbonization process[J]. International Journal of Applied Ceramic Technol⁃ogy,2017,14(2):220-227.

[20]PAN F, DU Z, LI S F, et al. Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering,2020,28(3):923-932.

[21]YANG Q M, YANG J G, YANG H L, et al. Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources[J]. Metals and Materials International,2016,22(4):663-669.

[22]WANG K F, SUN G D, WU Y D, et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction-carburization process[J]. International Journal of Refractory Metals & Hard Materials,2019,84:104975.

[23]PAN F, LIU J Y, DU Z, et al. Reaction process of WC prepared under a CO atmosphere in a fluidized bed[J]. Industrial & Engineering Chemistry Research,2021,60(1):162-172.

[24]刘铭哲,李斌川,韩庆,等. 超细碳化钨粉末制备工艺研究进展[J]. 稀有金属与硬质合金,2019,47(2):74-81.

LIU M Z, LI B C, HAN Q, et al. Development of preparation process of uitrafine tungsten carbide powder[J]. Rare Metals and Cemented Carbide. 2019,47(2):74-81.

[25]KANERVA U, KARHU M, LAGERBOM J, et al. Chemical synthesis of WC-Co from water-soluble precursors: the effect of carbon and cobalt additions to WC synthesis[J]. International Journal of Refractory Metals and Hard Materials,2016,56:69-75.

[26]WANG X L, SONG X Y, LIU X M, et al. Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions[J]. Nanotechnology,2015,26(14):145705.

[27]ALAN P, WOLFl-DIETER S, RONALD W, et al. Cobalt oxide as a raw material for the production of WC-Co cemented⁃carbides and its advantages for the pressing process[J]. International Journal of Refractory Metals and Hard Materials,2018,72:104-109.

[28]ZHAN W B, WANG H B, LIANG S H, et al. Acceleration effect of cobalt on carburization of tungsten at low temperature[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,732:429-435.

[29]吕健,羊建高,陈颢,等. 喷雾干燥与低温还原碳化法制备纳米晶WC-Co复合粉末[J]. 粉末冶金材料科学与工程,2013,18(6):835-839.

LÜ J, YANG J G, CHEN H, et al. Preparation of nanocrytalline WC-Co composite powder by spray-drying and low temperature reduction-carbonization process[J]. Materials Science and Engineering of Powder Metallurgy,2013,18(6):835-839.

[30]ZHU E, ZHANG J X, GUO S D, et al. Effect of Co on morphology and preparation of in situ synthesis of WC-Co composite powders[J]. Materials Research Express,2019,6(8):086522.

[31]SABAT B, PARAMGURU B, MISHRA B. Reduction of oxide mixtures of (Fe2O3+CuO) and (Fe2O3+Co3O4) by low-temperature hydrogen plasma[J]. Plasma Chemistry and Plasma Processing,2017,37(4):979-995.

[32]HOLGATE M M, SCHOBERL T, HALL S, et al. A novel route for the synthesis of nanocomposite tungsten carbide-cobalt using a biopolymer as a carbon source[J]. Journal of Sol-Gel Science and Technology,2009,49(2):145-149.

[33]NARKIEWICZ U, PODSIADLY M, JEDRZEJEWSKI R, et al. Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials[J]. Applied Catalysis A General,2010,384(1/2):27-35.

[34]尚慧俊,黎亨利,刘家义,等. Co对WO3-Co3O4预还原的影响规律及其产物碳化性能[J]. 化工学报,2022,73(12):5593-5604.

SHANG H J, LI H L, LIU J Y, et al. Effect of Co on the pre-reduction process of WO3-Co3O4 and carbonization performance of its product[J]. Chinese Journal of Chemical Engineering,2022,73(12):5592-5604.