ISSN 1008-5548

CN 37-1316/TU

最新出版

硼氮掺杂多孔碳电极材料的制备及其储能性能

Preparation and energy storage performance of boron-nitrogen-doped

porous carbon electrode materials


付时辉a ,李 圆a ,王延青a,b

四川大学 a. 高分子科学与工程学院,b. 高分子材料工程国家重点实验室,四川 成都610065


引用格式:

付时辉,李圆,王延青. 硼氮掺杂多孔碳电极材料的制备及其储能性能[J]. 中国粉体技术,2024,30(6):27-40.

FU Shihui, LI Yuan, WANG Yanqing. Preparation and energy storage performance of boron-nitrogen-doped porous carbon electrode materials[J]. China Powder Science and Technology,2024,30(6):27−40.


收稿日期:2024-07-08,修回日期:2024-09-25,上线日期:2024-10-16。

基金项目:四川省科技计划资助项目,编号 :2020YFH0104。

第一作者简介:付时辉(1999—),男,硕士生,研究方向为高性能储能器件及其改性。E-mail:tswbmyyfsh@163. com。

通信作者简介:王延青(1984—),男,研究员,博士,博士生导师,四川省“海外高层次人才引进计划”特聘专家,研究方向为纳米碳材料。E-mail:yanqingwang@scu. edu. cn。


摘要:【目的】 制备储能性能优良的混合超级电容器,开发可再生和清洁能源存储技术。【方法】采用多孔碳作为电极材料,对多孔碳掺杂硼B、氮N等元素,增加多孔碳缺陷数量,改善多孔碳的电化学储能性能。使用乙二胺四乙酸四钠作为碳源,以硼酸铵、硼酸钠与氯化铵作为B、 N掺杂源,分别制备B、 N共掺杂多孔碳(B-N-多孔碳)、无掺杂多孔碳以及B、N单独掺杂多孔碳(B-多孔碳、 N-多孔碳)。对制得的多孔碳电极材料进行测试与表征,并进行电化学性能分析,研究多孔碳电极材料的比容量、功率密度和循环稳定性等储能性能;通过温度优化实验确定制备 B-N-多孔碳的最优煅烧温度。【结果】B-N-多孔碳的孔类型主要有微孔、中孔、大孔,比表面积为668 m2/g,总孔容为0. 9 cm3/g;N、 B、 C、 O元素分布均匀,N、 B的质量分数分别为13. 12%、3. 24%;石墨化程度低,结构无序程度高,缺陷数量大,离子的吸附性能强,充放电性能最佳;拥有最大的比容量和容量保持率;电荷转移内阻最小,循环性能最佳,会产生赝电容行为。【结论】 当硼酸铵添加量为20 mmol,煅烧温度为700 ℃时,制得的B-N-多孔碳具有最好的微观形貌结构与电化学性能。

关键词:硼氮共掺杂;多孔碳;电极材料;超级电容器;储能性能


Abstract

Objective Hybrid supercapacitors can achieve higher energy densities without compromising the device’s output power and cycle life. To develop hybrid supercapacitors with excellent energy storage performance and advance renewable, clean energy storage technologies, porous carbon is used as the electrode material. Porous carbon has a high specific surface area and specific capacitance, along with good physicochemical stability. However, issues like nanoplate aggregation and stacking result in low charge storage efficiency. Therefore, introducing foreign atoms into the carbon framework can alleviate the stacking phenomenon through the electrostatic repulsion of functional groups, while the heteroatoms provide more electrochemically active sites, enhancing charge storage capability. Doping porous carbon with elements like boron (B) and nitrogen (N) increases defects in the carbon structure, improving its electrochemical energy storage performance.

Methods Ethylenediaminetetraacetic acid (EDTA) tetrasodium salt was used as the carbon source, while ammonium borate,sodium borate, and ammonium chloride were used as the B and N doping sources. The mixture was thoroughly stirred to obtain a solution, which was then subjected to repeated freezing and drying to produce the precursor. The precursor was calcined in a tube furnace under a nitrogen atmosphere at temperatures of 600 ℃,700 ℃, and 800 ℃ with a heating rate of 5 ℃/min. After cooling, the samples were purified and filtered. The resulting B-N co-doped porous carbon (B-N-porous carbon), undoped porous carbon, and single-element doped porous carbon (B-porous carbon, N-porous carbon) samples were dried and ground.To study the specific capacitance, power density, and cycling stability of the porous carbon electrode materials, the samples were characterized and tested. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the microstructure, energy dispersive spectrometer (EDS) for elemental composition, and Raman, X-ray diffraction(XRD), and X-ray photoelectron spectroscope (XPS) spectra for structural and compositional analysis. Brunauer-EmmettTeller (BET) analysis was used to determine the specific surface area and pore size of the porous carbon. Electrochemical performance was tested using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and long-term cycling tests.

Results and Discussion B-N-porous carbon exhibited a highly disordered nanoporous amorphous structure, with micropores,mesopores, and macropores, a specific surface area of 668 m²/g, and a total pore volume of 0. 9 cm³/g. The distribution of N,B, C, and O elements was uniform, with mass fractions of N and B being 13. 12% and 3. 24%, respectively. B-N-porous carbon had a low degree of graphitization, a high degree of disorder, a large number of defects, strong ion adsorption capacity,and the best charge-discharge performance. At the same current density, B-N-porous carbon had the highest specific capacity and capacity retention rate. It exhibited the lowest charge transfer resistance, enabling rapid electron conduction and ion transport. B-N-porous carbon also demonstrated the best cycling stability and pseudocapacitive behavior, with its specific capacity remaining stable after more than 500 cycles.

Conclusion When the amount of ammonium borate addition is 20 mmol, and the calcination temperature of preparing for B-N-porous carbon is 700 ℃, the B-N-porous carbon exhibits the best microstructure and electrochemical performance. The B-N co-doping and calcination method successfully produces porous carbon electrode materials with excellent performance,providing a foundation for hybrid supercapacitor components.

Keywords:boron-nitrogen co-doping; porous carbon; electrode material; supercapacitor; energy storage performance


参考文献(References)

[1]TANG H, YAO J J, ZHU Y R. Recent developments and future prospects for zinc-ion hybrid capacitors: a review[J].Advanced Energy Materials,2021,11(14):2003994.

[2]FOROUZANDEH P, KUMARAVEL V, PILLAI S C. Electrode materials for supercapacitors: a review of recent advances[J].Catalysts,2020,10(9):969.

[3]WANG Y Y, SUN S R, WU X L, et al. Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials,current collectors, and separators[J]. Nano-Micro Letters,2023,15(6):73-111.

[4]CHEN W M, WAN M, LIU Q, et al. Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodiumion batteries[J]. Small Methods,2019,3(4):1800323.

[5]付宇昂. 多元素掺杂的纳米多孔材料的合成及其电化学性能研究[D]. 北京:北京化工大学,2016.

FU Y A. Synthesis and electrochemical properties of multi-element doped nano-porous materials[D]. Beijing: BeijingUniversity of Chemical Technology,2016.

[6]雷文. 杂原子掺杂多孔碳材料的结构设计及在电化学储能中的应用[D]. 武汉:华中科技大学,2018.

LEI W. Structural design of heteroatom doped porous carbon materials and its application in electrochemical energy storage[D].Wuhan: Huazhong University of Science and Technology,2018.

[7]林臻. 掺杂多孔碳材料制备超级电容器及其电化学性能研究[D]. 福州:福州大学,2019.

LIN Z. Preparation and electrochemical properties of supercapacitors doped with porous carbon materials[D]. Fuzhou: Fuzhou University,2019.

[8]韩大量. 碳基混合电容器的可控构建及性能研究[D]. 天津:天津大学,2020.

HAN D L. Controllable construction and performance study of carbon-based hybrid capacitor[D]. Tianjin: Tianjin University,2020.

[9]YANG B J, CHEN J T, LIU L Y, et al. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor[J]. Energy Storage Materials,2019,23:522-529.

[10]LU Y Y, LI Z W, BAI Z Y, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132.

[11]HAO J, WANG J M, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(17):8053-8058.

[12]XU Z X, MA R J, WANG X L. Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors[J].Energy Storage Materials,2022,46:233-242.

[13]DONG X M, JIN H L, WANG R Y, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberryderived hierarchical porous carbon materials[J]. Advanced Energy Materials,2018,8(11):1702695.

[14]WANG Y F, ZHANG L, HOU H Q, et al. Recent progress in carbon-based materials for supercapacitor electrodes:a review[J]. Journal of Materials Science,2021,56(1):173-200.

[15]王天云,韩娜,贾德东,等. 硼、氮共掺杂多孔碳的制备及其超电容性能[J]. 无机化学学报,2023,39(2):309-316.

WANG T Y, HAN N, JIA D D, et al. Preparation and supercapacitive properties of B, N co-doped porous carbons[J].Chinese Journal of Inorganic Chemistry,2023,39(2):309-316.

[16]李金金. 碳材料的制备、改性及其电化学电容性能研究[D]. 重庆:西南大学,2016.

LI J J. Preparation, modification and electrochemical capacitance of carbon materials[D]. Chongqing: Southwest University,2016.

[17]HE H N, HUANG D, TANG Y G, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy,2019,57:728-736.

[18]CHEN H, XIONG Y C, YU T, et al. Boron and nitrogen Co-doped porous carbon with a high concentration of boron and its superior capacitive behavior[J]. Carbon,2017,113:266-273.

[19]GUO H L, GAO Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor[J].Journal of Power Sources,2009,186(2):551-556.