ISSN 1008-5548

CN 37-1316/TU

最新出版

激光粒度仪测量上限用毫米级粒度标准物质

Millimeter-scale particle size standard reference materials for measuring upper limit of laser particle size analyzers

陈胜利1, 朱秀芹21

中国石油大学(北京) 化学工程与环境学院, 北京 102249; 2. 北京纳微标物科技有限公司, 北京 102200


引用格式:

陈胜利, 朱秀芹. 激光粒度仪测量上限用毫米级粒度标准物质[J]. 中国粉体技术, 2025, 31(1): 1-8. CHEN Shengli, ZHU Xiuqin. Millimeter-scale particle size standard reference materials for measuring upper limit of laser par⁃ ticle size analyzers[J]. China Powder Science and Technology, 2025, 31(1): 1−8.

DOI:10.13732/j.issn.1008-5548.2025.01.010

收稿日期: 2024-06-01, 修回日期: 2024-06-25, 上线日期: 2024-10-16。

基金项目: 国家重点研发计划资助项目,编号 :2021YFA1501203。

第一作者简介: 陈胜利(1962—),男,教授, 博士, 博士生导师, 研究方向为颗粒体系、 石油加工、 催化剂及催化反应、 标准化。E-mail:slchen@cup. edu. cn。


摘要:【目的】 为了解决我国激光粒度仪测量上限现状不清楚的问题,研制用于判断激光粒度仪测量上限的毫米级颗粒 粒度标准物质。【方法】 利用悬浮聚合再筛分法制备标称粒径为 0. 6、0. 8、1. 0、1. 1 mm 的聚苯乙烯微珠粒度标准物质; 利用经NIST SRM2800测微尺校准的光学显微镜对制得的标准物质进行定值。【结果】 制得的 4种粒度标准物质体积中 位粒径分别为(0.553±0.007)、( 0.749±0.008)、( 0.925±0.008)、(1.07±0.01)mm;利用制得的粒度标准物质检验了国内外 6 个公司生产的 7 种型号激光粒度仪的测量上限,发现只有部分型号的粒度仪能准确测量毫米级粒度标准物质。【结论】 制得的毫米级粒度标准物质样品均匀、稳定,粒径定值结果溯源至He-Ne激光波长,准确可靠,完善了我国粒度 标准物质体系;激光粒度仪测量上限不仅取决于光探测器最内侧单元的半径,还取决于其使用光源的激光质量。

关键词: 颗粒粒度; 标准物质; 聚苯乙烯微珠; 激光粒度仪; 测量上限


Abstract 

Objective To address the unclear measurement upper limits of laser particle size analyzers in China, the study develops millimeter-scale particle size standard materials to evaluate performance of these devices, filling a significant gap in this field.

Methods Polystyrene(PS) microbeads with nominal diameters of 0.6, 0.8, 1.0, and 1.1 mm were prepared using suspension polymerization-partial sulfonation-sieving method. These microbeads were designed to serve as particle size standard materials. An optical microscope calibrated with an N    IST SRM2800 micrometer was employed to measure the particle sizes of these four standard materials. Their homogeneity and stability were evaluated, and the measurement results were traceable to the wavelength of He-Ne lasers. These millimeter-scale particle size standards were subsequently used to assess several commonly used laser particle size analyzers available on the Chinese market.

Results and Discussion The polystyrene microbeads exhibited excellent sphericity, a narrow particle size distribution, and outstanding homogeneity and stability. The volume median diameters of these samples were (0. 553±0. 007) ,(0.749±0.008),( 0.925±0.008), and(1.07±0.01) mm, respectively. These measured diameters were accurate, reliable, and traceable to the He-Ne laser wavelength. When tested, only certain particle size analyzers were capable of accurately measuring all four types of millimeter-scale standard materials. Some analyzers could only measure 1-2 sample types accurately, while others failed to measure millimeter-scale particle size standards at all. Analyzers with the smallest measurement deviations were produced by three companies and used He-Ne laser sources, whereas those with larger deviations used more affordable semiconductor laser sources.

Conclusion The four types of millimeter-scale particle size standard materials fill a critical gap in millimeter-scale particle size standards in China and enhance the country’s overall particle size standard system. To evaluate the measurement upper limits of laser particle size analyzers, multiple reference samples are required. The measurement upper limit of an analyzer is influenced not only by the radius of the innermost unit of the light-receiving detector( i. e. , the minimum receiving angle) but also by the quality of the laser light source used. Higher laser quality is associated with a higher measurement upper limit for the particle size analyzer. Analyzers equipped with He-Ne lasers exhibit a higher measurement upper limit compared to those using semiconductor lasers.

Keywords: particle size; standard reference materials; polystyrene microspheres; laser particle size analyzer; measurement upper limit


参考文献(References)

[1]蔡小舒, 苏明旭, 沈建琪, 等. 颗粒粒度测量技术及应用[M]. 2版. 北京: 化学工业出版社, 2022. 

CAI X S, SU M X, SHEN J Q. Particle size measurement technology and applications[M]. 2nd ed. Beijing: Chemical Industry Press, 2022: 84-96.

[2]DERIEMAEKER L, FINSY R. Shape and size determination by laser diffraction: average aspect ratio and size distributions by volume; feasibility of data analysis by neural networks[J]. Particle & Particle Systems Characterization, 2005, 22(1):5-13.

[3]MA Z H, MERKUS H G, SCARLETT B. Extending laser diffraction for particle shape characterization: technical aspects and application[J]. Powder Technology, 2001, 118(1/2): 180-187.

[4]DR Z M, MERKUS H G, VAN DER VEEN H G, et al. On-line measurement of particle size and shape using laser diffraction[J]. Particle & Particle Systems Characterization, 2001, 18(5/6): 243-247.

[5]李永华, 潘科玮, 平力, 等. 固体推进剂燃烧颗粒粒径的在线测量[J]. 光学学报, 2020, 40(15): 1512003. 

LI Y H, PAN K W, PING L, et al. Online size measurement of burning particles of solid propellants[J]. Acta Optica Sinica,2020, 40(15): 1512003.

[6]邱俊, 陈晨, 罗晓庆, 等. 一种固体火箭发动机燃烧室凝相产物粒径在线测量方法[J]. 固体火箭技术, 2018, 41(3):303-307, 312. 

QIU J, CHEN C, LUO X Q, et al. An on-line measurement method for particle diameter determinations of solid-phase products of a SRM combusto[r J]. Journal of Solid Rocket Technology, 2018, 41(3): 303-307, 312.

[7]陈胜利, 赵相东, 孙伟, 等. 微米级粒度标准物质的研制[J]. 中国粉体技术, 2022, 28(2): 61-69.

CHEN S L, ZHAO X D, SUN W, et al. Development of reference materials with micron particle size[J]. China Powder Science and Technology, 2022, 28(2): 61-69.

[8]孟雪, 刘冉, 王冰玥, 等. 纳米/亚微米/微米粒度标准物质研究进展[J]. 计量技术, 2020(1): 12-17.

MENG X, LIU R, WANG B Y, et al. Technical progress of nano-meter, submicro-meter and micro-meter scale reference materials for particlesizing[J]. Metrology Science and Technology, 2020(1): 12-17.

[9]国家市场监督管理总局, 国家标准化管理委员会. 颗粒 激光粒度分析仪 技术要求: GB/T 41949—2022[S]. 北京: 中 国标准出版社, 2022. 

State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Particle—laser particle size analyser—technical requirements: GB/T 41949—2022[S]. Beijing: Standards Press of China, 2022.

[10]胡华, 张福根, 吕且妮, 等. 激光粒度仪的测量上限[J]. 光学学报, 2018, 38(4): 0429001. 

HU H, ZHANG F G, LYU Q N, et al. Measurement upper limit of laser particle size analyze[r J]. Acta Optica Sinica, 2018,38(4): 0429001.[11]CHAUDHARY V, SHARMA S. Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions[J]. Journal of Polymer Research, 2019, 26(5): 102.

[12]ROSTAMI H, ABBASI F, JALILI K, et al. Insight into the structure of polystyrene-poly(methyl methacrylate) core-shell particles synthesized by seeded suspension polymerization[J]. Polymers and Polymer Composites, 2021, 29(9): 1575- 1586.

[13]赵颖, 陈苏, 许涌深, 等. 无外加表面活性剂的苯乙烯悬浮聚合[J]. 化学工业与工程, 2015, 32(4): 24-29. 

ZHAO Y, CHEN S, XU Y S, et al. Suspension polymerization of styrene without extra-surfactan[t J]. Chemical Industry and Engineering, 2015, 32(4): 24-29.

[14]全国标准物质计量技术委员会. 标准物质的定值及均匀性、 稳定性评估: JJF 1343—2022[S]. 北京: 国家市场监督 管理总局, 2022. 

National Technical Committee for Measurement of Standard substances. Characterization, homogeneity and stability assessment of reference materials: JJF 1343—2022[ S]. Beijing: State Administration for Market Regulation, 2022.

[15]International Organization for Standardization. Particle size analysis, image analysis method, part 1: static image analysis methods: ISO 13322-1:2014[ S/OL](2014-05-01)[2024-10-10]. https://www. iso. org/standard/51257. html

[16]国家质量监督检验检疫总局,中国国家标准化管理委员会. 粒度分析 图像分析法 第1部分:静态图像分析法: GB/T 21649. 1—2008[S]. 北京: 中国标准出版社, 2008. 

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Particle size analysis-image analysis methods-part 1: static image analysis method: GB/T 21649. 1—2008[S]. Beijing: Standards Press of China, 2008.

[17]陈胜利, 陈胜, 孙伟, 等. 鉴别粒度仪分辨率高低的多峰粒度分布标准物质[J]. 中国粉体技术, 2021, 27(3): 50- 58, 104. 

CHEN S L, CHEN S, SUN W, et al. Standard materials with multi-peak particle size distribution for evaluation of resolution of particle size analyzers[J]. China Powder Science and Technology, 2021, 27(3): 50-58, 104.

[18]International Organization for Standardization. Reference materials, approaches for characterization and assessment of homogeneity and stability: ISO 33405—2024[S/OL]. (2024-05-01)[2024-10-10]. https://www. iso. org/standard/ 84226. html

[19]复旦大学. 概率论(第一册): 概率论基础[M]. 北京: 人民教育出版社, 1979: 94. 

Fudan University. Probability theory(volume 1):fundamentals of probability theory[M]. Beijing: People’s Education Press,1979: 94.

[20]房启勇, 施浣芳, 高洪尧. 半导体激光器光束质量改善新技术综述[J]. 光学技术, 2003, 29(1): 107-109, 112. 

FANG Q Y, SHI H F, GAO H Y. New technologies summary of semiconductor laser beam quality improvemen[t J]. Optical Technique, 2003, 29(1): 107-109, 112.