铁生年 ,黄伟豪 ,孙增宝 ,陈凤兰
(青海大学新能源光伏产业研究中心 ,西宁青海 810016)
引用格式 :
铁生年 ,黄伟豪 ,孙增宝 ,等.添加改性纳米碳和碳化硅颗粒对芒硝相变材料吸光、透光性能的影响 [ J].中国粉体技 术, 2024, 30(1): 1-13.
TIE S N, HUANG W H, SUN Z B, et al. Effect of modified carbon and silicon carbide nanoparticles on light absorption and transmittance properties of Glauber’s salt phase change materials[J]. China Powder Science and Technology, 2024, 30(1): 1-13.
DOI:10.13732 / j.issn.1008-5548.2024.01.001
收稿日期 : 2023-09-12,修回日期 :2023-10-13,上线日期 :2023-11-17。
基金项目 :青海省自然科学基金项目 ,编号 :2021-ZJ-906。
第一作者简介 :铁生年 (1965—),男,教授 ,博士生导师 ,全国优秀科技工作者 ,国务院特殊津贴专家 ,青海省优秀专家。研究方向为相变储能材料。 E-mail: tieshengnian@163.com。
摘要:【目的】研究改性纳米碳颗粒和碳化硅颗粒对芒硝相变复合材料吸光性能和透光性能的影响。【方法】改性纳米碳粉和改性纳米碳化硅粉与芒硝相变材料结合 ,制备纳米颗粒芒硝复合相变材料 ,讨论不同波长对复合相变材料吸光、透光性和分散稳定性的影响 ;分散稳定性利用鞘流法图像仪对纳米颗粒进行分析 ,稳定性通过在 50 ℃和室温下进行 7d静置后观察确定 ;采用积分反射仪分析相变材料吸光、透光性。【结果】鞘流法图像分析发现 ,改性纳米碳粉和改性纳米碳化硅粉形貌结构基本无变化且没有团聚现象 ,静置观察发现没有出现纳米颗粒分层和团聚现象 ;添加质量分数分别为0. 1%、 0. 5%、 1. 0%的改性碳粉后 ,相变材料对紫外光的平均吸光度提高 20% ~ 35%,可见光的平均透过率下降 26% ~ 35%,红外光 (波长为 800 ~1 500 nm)的透光率下降 10% ~ 42%;分别添加相同质量分数的改性碳化硅后 ,相变材料对紫外光的平均吸光度提高 22%~26. 6%,可见光的平均透过率下降 20% ~ 29%,红外光 (波长为 1 500~2 700 nm)的透光率提高 8% ~ 29%。【结论】改性纳米颗粒在芒硝基相变材料中具有良好的分散性和稳定性 ;通过在传统芒硝基相变材料基础上添加不同含量的改性纳米颗粒 ,获得的纳米颗粒芒硝基相变材料对不同波长光的吸光率和透光率的基础性数据 ,为高性能纳米颗粒芒硝相变材料快速光热响应的研究打下基础。
关键词:芒硝 ;相变材料 ;吸光率 ;透光率 ;纳米碳粉 ;纳米碳化硅粉
Abstract
Objective The carbon nanoparticles and the silicon carbide nanoparticles are chemically and physically modified, respectively.These modified hydrophilic nanoparticles are incorporated into mirabilite-based phase transition materials to create compositephase-change materials. A systematic design is adopted to vary the concentration of these modified nanoparticles within traditionalmirabilite-based phase change materials. The objective is to enhance the absorbance properties of the resulting composite materials across different wavelength bands. This strategic improvement in absorbance is anticipated to play a crucial role in enhancing theefficiency of solar energy photothermal conversion for mirabilite-based phase change energy storage materials.
Methods In this paper, a multi-step approach was undertaken to modify nanoparticles for subsequent integration into phasechange materials. Firstly, a mixed acid solution was created by combining concentrated sulfuric acid and concentrated nitric acid.This acid was then mixed with the nanocarbon powder, and the mixture was centrifuged and dried several times after heating andreaction to produce the modified nanocarbon powder. Secondly, silicon carbide nanoparticles, along with polyvinylpyrrolidone andtetramethylammonium hydroxide were mixed and ball-milled. Subsequently, the modified silicon carbide nanoparticles were obtained by centrifugal drying. Thirdly, a mixture of Na2SO4·10H2O and Na2HPO4·12H2O in a mass ratio of 2∶8 was dissolved in a water bath at 50 ℃ for 45 min, then the modified carbon and silicon carbide nanoparticles were added with different massfractions and homogeneously dispersed in the phase-change material by ultrasonication. Finally, absorbance and transmittance characteristics were assessed using a UH4150 spectrophotometer.
Results and Discussion The dispersion stability of these nanoparticles is meticulously examined using the sheath flow method image instrument. Notably, the modified carbon and silicon carbide nanoparticles exhibit no significant alterations in their morphology or structure. Importantly, no signs of agglomeration is detected, which indicates their excellent dispersion characteristicsin both water and mirabilite-based phase change materials. Moreover, static observations conducted over a 7 d period at both50 ℃ and room temperature demonstrate that these modified nanoparticles maintain their stability within the mirabilite-basedphase change material. No instances of nanoparticle delamination or agglomeration are observed, underscoring the robust stabilityof the modified nanoparticles within the composite material. The absorbance and transmittance properties of the phase change materials are analysed by integral reflectometry. The results reveal that the addition of modified carbon powder (at concentrationsof 0. 1%, 0. 5%, and 1. 0%), leading to a notable increase in average absorbance in the UV light spectrum, ranging from 20%to 35%. Conversely, there is a reduction in average transmittance for visible light, which decreases by 26% to 35%. Additionally, transmittance in the infrared light range (from 800 to 1 500 nm) decrease by 10% to 42%. Similarly, the incorporation of modified silicon carbide nanoparticles (at concentrations of 0. 1%, 0. 5%, and 1. 0%) lead to an increase in average absorbance inthe UV light spectrum by 22% to 26. 6%. Conversely, average transmittance for visible light decreased by 20% to 29%. Furthermore, there is an increase in transmittance in the infrared light range (from 1 500 to 2 700 nm) by 8% to 29%. These findingscollectively demonstrate that the addition of modified carbon and silicon carbide nanoparticles results in significant alterations inthe absorbance and transmittance properties of the mirabilite-based phase change materials, particularly across different wavelength ranges.
Conclusion 1)The morphology and structure of the modified nanocarbon powder and nanosilicon carbide remain unchanged, withapproximately 95% of the particles in both aqueous and mirabilite-based composite salt systems falling within size range of 0. 2to 4 nm. This observation indicates that the modified nanocarbon powder and nano silicon carbide exhibit excellent dispersibility.2)Under static observation and in comparison with unmodified nanoparticles, the modified nanocarbon powder and nano silicon carbidewithin the solid-liquid system of the mirabilite-based phase change material displays no significant signs of agglomeration. Additionally,the crystalline mirabilite composite phase change material does not exhibit pronounced delamination. 3)The introduction of carbon nanoparticles results in an improvement in the average absorbance of the mirabilite phase change composites in the ultraviolet light range(from 200 to 400 nm), simultaneously reducing transmittance in the visible light range (from 400 to 780 nm) and the infrared lightrange (from 800 to 1 500 nm). This suggests that the inclusion of carbon nanoparticles enhances the light absorption efficiency of themanganese phase change material. 4)The average absorbance of mirabilite phase change composites incorporating silicon carbide nanoparticles notably increases by 22% to 26. 6% within the ultraviolet light spectrum (from 200 to 400 nm). Conversely, the average transmittance in the visible light range (from 400 to 780 nm) decreases, while transmittance within the infrared light range (from 1 500 to2 700 nm) increases.
Keywords: Glauber’s salt; phase change materials; absorption; transmittance; modified nano carbon powder; modified nanosilicon carbide powder
参考文献 (References):
[1]LEE S, LI S, EASTMAN J A, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121(2): 280-289.
[2]DONGHYUN S, DEBJYOTI B. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 216-220.
[3]KHODADADI J M, HOSSEINIZADEH S F. Nanoparticle-enhanced phase change materials with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer, 2007, 34(5): 534-543.
[4]WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes [J]. Thermochimica Acta, 2009, 488(12): 39-42.
[5]MO S P, CHEN Y, JIA L S, et al. Reduction of supercooling of water by TiO2 nanoparticles as observed using differential scanning calorimeter[J]. Journal of Experimental Nanoscience, 2013, 8(4): 533-539.
[6]ELGAFY A, LAFDI K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15): 3067-3074.
[7]刘玉东 .纳米复合低温相变蓄冷材料的制备及热物性研究 [D].重庆 :重庆大学 , 2005.
LIU Y D. Study on preparation and thermal properties of phase change nanocomposites for cool storage[D]. Chongqing: Chongqing University, 2005.
[8]杨硕 ,朱冬生 ,吴淑英 ,等. Al2O3-H2O纳米流体相变蓄冷特性研究 [J].制冷学报 , 2010, 31(1): 23-26.
YANG S, ZHU D S, WU S Y, et al. Stuy on phase-change cold storage characteristics of Al2O3-H2O nanofluids[J]. Journal of Refrigeration, 2010, 31(1): 23-26.
[9]张鸿声 ,汪南 ,朱冬生 ,等.纳米铜粉 /石蜡复合相变储能材料的性能研究 [J].材料导报 , 2011(增刊 1): 173-176.
ZHANG H S, WANG N, ZHU D S, et al. Study on performance of nano-copper / paraffin wax composite phase change material[J]. Materials Reports, 2011(S1): 173-176.
[10]柳馨 ,铁健 ,铁生年 .纳米粉体对 Na2SO·10H2O 过冷及相分层现象的影响 [ J].3072-3078.人工晶体学报,2015, 44(11):3072-3078.
LIU X, TIE J, TIE S N. Effect of nano powder addition on the subcooling and phase stratification of sodium sulfate decahydrate[J]. Journal of Synthetic Crystals, 2015, 44(11): 3072-3078.
[11]柳馨 ,铁健 ,铁生年 .温室多壁碳纳米管芒硝基相变材料储能性能 [J].农业工程学报 , 2016, 32(6): 226-231.
LIU X, TIE J, TIE S N. Energy storage properties of mans nitro phase transition materials of multi-walled carbon nanotubes of greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 226-231.
[12]张雨 ,铁生年 .改性多壁碳纳米管芒硝基纳米流体相变材料制备及其流变特性 [J].青海大学学报 , 2021, 39(2): 62-68.
ZHANG Y, TIE S N. Preparation and rheological properties of modified multi-walled carbon nanotubes mirabilite nanofluidphase-change materials[J]. Journal of Qinghai University, 2021, 39(2): 62-68.
[13]张雨 ,铁生年 ,汪长安 .改性纳米碳粉芒硝基纳米流体强化传热 [J].材料导报 , 2022, 36(18): 44-50.
ZHANG Y, TIE S N, WANG C A. Enhanced heat transfer by modified nano-carbon powder in mirabilite-based nanofluid [J]. Materials Reports, 2022, 36(18) :44-50.
[14]ZHANQ P, XIAO X, MA Z W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510.
[15]蒋自鹏 ,张雨 ,铁健 ,等.一步法氧化改性纳米碳增强芒硝基复合相变材料热性能 [J].材料导报 , 2022, 36(12): 22-27.
JIANG Z P, ZHANG Y, TIE J, et al. One-step oxidation of nano carbon materials to enhance the thermal properties of Glauber’s salt PCMs[J]. Materials Reports, 2022, 36(12): 22-27.
[16]BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8(3):902-907.
[17]KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys Rev Lett, 2001, 87(21): 215502.
[18]SCIDA K, STEGE P W, HABY G, et al. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review[J]. Anal Chim Acta, 2011, 691(1 /2): 6-17.
[19]TAO Y, LIN C, HE Y. Preparation and thermal properties characterization of carbonate salt / carbon nanomaterial composite phase change material[J]. Energy Convers Manage, 2015, 97: 103-110.