特格希 ,陶 拉,敖 敦,高春光
(内蒙古师范大学 a.化学与环境科学学院 , b.内蒙古自治区绿色催化重点实验室 ,内蒙古呼和浩特 010022)
引用格式 :
特格希 ,陶拉 ,敖敦 ,等.高岭土在水污染物吸附方面的研究进展 [J].中国粉体技术 , 2024, 30(1): 46-55.
MUSCHIN T, BORJIGIN T, BAI A, et al. Recent advances in kaolin for adsorption of water pollutants [ J]. China Powder Science and Technology, 2024, 30(1): 46-55.
DOI:10.13732 / j.issn.1008-5548.2024.01.005
收稿日期 : 2023-08-18,修回日期 :2023-10-11,上线日期 :2023-11-28。
基金项目 :国家自然科学基金 ,编号 :22061034;内蒙古自治区高等学校科学研究项目 ,编号 :NJZZ21010;大学生创新创业训练计划项目 ,编号 :S202210135020;内蒙古自治区水环境安全协同创新培育中心项目 ,编号:XTCX003。
第一作者简介 : 特格希(1980— ),男( 蒙古族 ), 副研究员 , 博士 , 硕士生导师 , 研究方向为黏土资源综合利用 、水污染物吸附以及多相催化有机合成 。E-mail : tegshi@imnu.edu.cn。
摘要:【目的】为了探索高岭土、无机或有机改性高岭土、复合改性高岭土的特点 ,对它们在水污染物吸附方面的作用进行综述 ,分析改性与否对其功能的影响。【研究现状】总结高岭土、无机和有机改性高岭土、复合材料对水中重金属离子污染物、有机污染物及其他部分无机污染物的吸附性能。【展望】提出高岭土本身的吸附效果和作用不强 ,经有机、无机改性活化后或复合改性后能够提高高岭土对水污染物的吸附性能。认为今后的研究重点应在有效提高高岭土对水污染物吸附性能方面 ,同时应探索低能耗、低成本、工艺简单、环境友好的高岭土改性方案。
关键词:高岭土 ;吸附 ;水污染 ;有机改性 ;无机改性 ;复合改性
Abstract
Significance Nowadays, the increasing concentration of pollutants in industrial wastewater has caused serious pollution of waterresources, which has affected the daily life and health of human beings. The traditional methods of treating water pollutants aremainly divided into biological treatment, physical treatment and chemical treatment. Among them, the adsorption is the mostwidely used in the physical treatment methods, but the traditional adsorbents are limited by their expensive and difficulty in separating from water. Hence, much attention has been paid to the preparation of a new type of adsorbent that is economical and easyfor solid-liquid separation. Kaolin is a resourceful, cheap and easily available, non-toxic non-metallic mineral clay resource. The chemical formula of its crystals is Al2O3·2SiO2·2H2O. The application of kaolin has limited in industrial fields such as paper, paint, rubber, ceramics, etc. , while the fields of catalytic and pollutant treatment are still lack of application. In recent years, these materials have attracted the attention of researchers due to its advantages of abundant, cheap and easy availability.
Progress The development on the adsorption of heavy metal pollutants, organic pollutants and other pollutants such as F-in water byraw kaolin, organo-inorganic modified kaolin and composite modified kaolin is summarized. kaolin itself is reported to have certain adsorption and ion-exchange capacity. However, the adsorption efficiency of raw kaolin is unsatisfactory. Therefore,researchers have tried various possible ways to modify kaolin, such as inorganic acid and alkali modification of the raw or calcinedkaolin, organic modification using silane coupling agent, DMSO, etc., and composite modification with organic substances suchas chitosan or alginate, and inorganic substances including titanium oxide and magnetic iron. The results of adsorption performance of water pollutants show that different modification methods can improve the adsorption performance of kaolin on water pollutants. For example, calcination and acid or base treatment can improve the specific surface area of kaolin and enhance its adsorption performance. The composite modification of kaolin to diversify the adsorption sites and effectively improve the adsorptionperformance is a much-studied topic. Researchers have also discussed the adsorption mechanism to different degrees, and most ofthe adsorption isotherms are fitted with the Langmuir model, and most of the adsorption kinetics is consistent with the pseudo-second-order model.
Conclusions and Prospects The research on the adsorption of kaolin for removal of water pollutants has been gradually developed,with various modification methods. However, there remains a challenge to efficiently improve the adsorption performance of kaolin.More research should be focused on how to improve the adsorption properties of kaolin while exploring low energy consumption, lowcost, simple process, environmentally friendly modification methods that effectively improves the value of kaolin resources.
Keywords:kaolin clay; adsorption; water pollutant; organic modification; inorganic modification; composite modification
参考文献 (References):
[1]韩丁 .不同形貌 Fe3O4复合高岭土的制备及对 Cu2+的吸附性能研究 [D].西安 :西安建筑科技大学 , 2018.
HAN D. Synthesis of different morphologies of Fe3O4 composite with kaolin and the adsorption property of Cu2+[D]. Xi’an: Xi’an University of Architecture and Technology, 2018.
[2]王涛 ,朱燕娟 ,张伟 ,等.我国高岭土资源开发现状及展望 [J].科技资讯 , 2008(18): 96.
WANG T, ZHU Y J, ZHANG W, et al. Current development situation and prospect on kaolin resources in China[J].Science & Technology Information, 2008(18): 96.
[3]袁建民 .粘土矿物对重金属离子的吸附能力研究 [D].石家庄 :河北地质大学 , 2018.
YUAN J M. Adsorption ability of clay minerals to heavy metal ions[D]. Shijiazhuang: Hebei GEO University, 2018.
[4]CHOUCHANE T, BOUKARI A. Impact of influencing parameters on the adsorption of nickel by kaolin in an aqueous medium[J]. Analytical and Bioanalytical Chemistry Research, 2022, 9(4): 381-399.
[5]MALIMA N M, LUGWISHA E H, MWAKABOKO A S. The efficacy of raw malangali kaolin clay in the adsorptive removal of cadmium and cobalt ions from water[J]. Tanzania Journal of Science, 2018, 44(2): 64-80.
[6]LIU C Q, HUANG Y J, ZHU Z C, et al. Study on capture performance on PbCl2 and CdCl2 using kaolin modified by sodium ions[J]. Chemistry Select, 2022, 7(40): e202103554.
[7]贺勇 ,彭乐 ,魏贺 ,等.高岭土负载纳米铁在含水层的运移行为及重金属污染修复效能研究 [ J].环境科学学报 ,2023, 43(2): 192-203.
HE Y, PENG L, WEI H, et al. The migration behavior and remediation efficiency of kaolin-supported zerovalent iron in aquifer[J]. Acta Scientiae Circumstantiae, 2023, 43(2): 192-203.
[8]王豪波 .硫酸钾制备过程副产氯化钙中 Cu2+和 Pb2+的去除技术研究 [D].贵阳 :贵州大学 , 2022.
WANG H B. Study on the removal of Cu2+ and Pb2+ from calcium chloride by-products of potassium sulphate preparation [D]. Guiyang: Guizhou University, 2022.
[9]史帅 .硅烷改性煤系高岭土及对废水中 Cr(VI)的吸附研究 [D].阜新 :辽宁工程技术大学 , 2021.
SHI S. Silane modified coal-based kaolin and its effect on Cr(VI) in wastewater adsorption[D]. Fuxin: Liaoning Technical University, 2021.
[10]钟静萍 .改性高岭土和 Cu-MOF材料吸附去除废水中 Pb2+的性能研究 [D].赣州 :江西理工大学 , 2021.
ZHONG J P. Study on the performance of modified kaolin and Cu-MOF material for adsorption and removal of Pb2+ in wastewater[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[11] BALAJI T. N, RAHMAN S M A, GOMATHI T, et al. Crosslinked chitosan oligosaccharide-based binary and ternary blends for the removal of Cu(II) ions[EB /OL]. International Journal of Environmental Science and Technology, (202110-19)[2022-04-20]. https: //link.springer.com /article /10.1007 /s13762-021-03704-5
[12]WANG H, YANG N C, QIU M Q. Adsorption of Cr(VI) from aqueous solution by biochar-clay derived from clay and peanut shell[J]. Journal of Inorganic Materials, 2020, 35(3): 301-308.
[13]XU R, LI Q, YANG Y B, et al. Removal of heavy metal(loid)s from aqueous solution by biogenic FeS-kaolin composite: behaviors and mechanisms[J]. Chemosphere, 2022, 299: 134382.
[14]LIU D M, DONG C, XU B J. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalentchromium from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105438.
[15]RÂPǍ M, ŢURCANU A A, MATEI E, et al. Adsorption of copper (II) from aqueous solutions with alginate /clay hybrid materials[J]. Materials, 2021, 14(23): 7187.
[16]AWWAD M A, SALEM N, AMER W M, et al. Adsorptive removal of Pb(II) and Cd(II) ions from aqueous solution onto modified hiswa iron-kaolin clay: equilibrium and thermodynamic aspects[J]. Chemistry International, 2021, 7(2): 139144.
[17]LIN Z F, PAN Z W, ZHAO Y H, et al. Removal of Hg2+ with polypyrrole-functionalized Fe3O4 / kaolin: synthesis, performance and optimization with response surface methodology[J]. Nanomaterials, 2020, 10(7): 1370.
[18]MUBARAK M F, MOHAMED A M G, KESHAWY M, et al. Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies[J]. Alexandria Engineering Journal, 2022, 61(6): 4189-4207.
[19]ASBOLLAH M A, SAHID M S M, PADMOSOEDARSO K M, et al. Individual and competitive adsorption of negatively chargedacidblue25andacidred1ontorawindonesiankaolinclay[EB /OL]. ArabianJournalforScienceandEngineering, (2022-02-02)[2022-04-20]. https:/ /link.springer.com/article /10.1007 /s13369-021-06498-3
[20]李薇 ,陈冲 ,马宏飞 ,等.高岭土吸附结晶紫性能研究 [J].应用化工 , 2016, 45(1): 47-51.
LI W, CHEN C, MA H F, et al. Study on the adsorption of crystal violet on kaolin[J]. Applied Chemical Industry, 2016, 45(1): 47-51.
[21]马俊 ,徐正阳 ,岳霞 ,等.高岭土对染料废水中亚甲基蓝的吸附去除 [J].净水技术 , 2017, 36(3): 85-89, 95.
MA J, XU Z Y, YUE X, et al. Adsorption and removal of methylene blue in dyeing wastewater by kaoline[J]. Water Purification Technology, 2017, 36(3): 85-89, 95.
[22]DIAS M, VALÉRIO A, OLIVEIRA D. et al. Adsorption of natural annatto dye by kaolin: kinetic and equilibrium[J].Environmental Technology, 2020, 41(20): 2648-2656.
[23]LELLOU S, KADI S, GUEMOU L, et al. Study of methylene blue adsorption by modified kaolinite by dimethyl sulfoxide [J]. Ecological Chemistry and Engineering S, 2020, 27(2): 225-239.
[24]BHATTACHARYYA K G, GUPTA S S, SARMA G K. Kinetics, equilibrium isotherms and thermodynamics of adsorptionof Congo red onto natural and acid-treated kaolinite and montmorillonite[J]. Desalination and Water Treatment, 2015, 53(2): 530-542.
[25]MUSCHIN T, DUO X, BAO U, et al. Environmentally friendly treatment of coal-bearing kaolin by polyhydroxy-iron for anionic dye removal[J]. ChemistrySelect, 2019(4): 13810-13816.
[26]乌日嘎 ,陈淑霞 ,特格希 ,等,聚合羟基铝改性煤系高岭土对刚果红的吸附性能及吸附动力学 [ J].内蒙古师范大学学报 (自然科学蒙文版 ), 2021, 42(4): 1-10.
TORGHUT W, CHEN S X, MUSCHIN T, et al. Adsorption performance of polyhydroxy-aluminium modified coal-bearing kaolin for Congo red and kinetics[J]. Journal of Inner Mongolia Normal University (Natural Science Mongolian Edition), 2021, 42(4): 1-10.
[27]RADY D, SHABAN M, ELSAYED K N M, et al. Experimentally and theoretically approaches for Congo red dye adsorption on novel kaolinite-alga nano-composite[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(18): 7229-7251.
[28]LIU D M, DONG C, ZHONG J P, et al. Facile preparation of chitosan modified magnetic kaolin by one-pot coprecipitation method for efficient removal of methyl orange[J]. Carbohydrate Polymers, 2020, 245: 116572.
[29]ŞENOL Z M, ÇETINKAYA S, YENIDÜNYA A F, et al. Epichlorohydrin and tripolyphosphate-crosslinked chitosan-kaolin composite for auramine O dye removal from aqueous solutions: experimental study and DFT calculations[J]. International Journal of Biological Macromolecules, 2022, 199: 318-330.
[30]ARASI M A, SALEM A, SALEM S. Extraction of nano-porous silica from hydrosodalite produced via modification oflow-grade kaolin for removal of methylene blue from wastewater[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(7): 1989-2000.
[31]PINHEIRO D R, PINHEIRO A P, PONTES F A, et al. SAPO -34 obtained from amazonian flint kaolin: influence of impurities ‘oxidized Fe /Ti’ in the synthesis and its application in the removal of cationic dye from water[J]. Processes, 2023, 11(3): 662.
[32]韩宇霞 ,张斌 ,赵斯琴 ,等. TiO2 -煤系高岭土纳米复合物的制备及其吸附性能 [J].中国粉体技术 , 2019, 25(1): 21-27.
HAN Y X, ZHANG B, ZHAO S Q, et al. Synthesis of TiO2-coal-bearing kaolinite nanocomposites and their adsorptive properties[J]. China Powder Science and Technology, 2019, 25(1): 21-27.
[33]塔林托亚 ,胡雪婷 ,赵斯琴 ,等.煤系高岭土 / TiO2纳米复合物的制备及吸附性能 [ J].应用化工 , 2017, 46(2): 216-220.
TALINTUOYA1, HU X, ZHAO S, et al. Preparation of coal-bearing kaolinite / TiO2 nanocomposite and its adsorptive properties[J]. Applied Chemical Industry, 2017, 46(2): 216-220.
[34]HAI Y, LI X, WU H, et al. Modification of acid-activated kaolinite with TiO2 and its use for the removal of azo dyes[J]. Applied Clay Science, 2015, 114: 558-567.
[35]GAO Z, LI X, WU H, et al. Magnetic modification of acid-activated kaolin: synthesis, characterization, and adsorptive properties[J]. Microporous and Mesoporous Materials, 2015, 202: 1-7.
[36]KULKARNI R M, CHALAGERI B D, NARULA A, et al. Denitrification performance of kaolin and modified kaolin for thetreatment of nitrate contaminated water: isotherm and kinetic studies[J]. Nanotechnology for Environmental Engineering, 2022, 7: 405-413.
[37] HUDAIB B. Treatment of real industrial wastewater with high sulfate concentrations using modified Jordanian kaolinsorbent: batch and modelling studies[J]. Heliyon, 2021, 7(11): e08351.
[38]ZAINI N S M, LENGGORO I W, NAIM M N, et al. Adsorptive capacity of spray-dried pH-treated bentonite and kaolin powders for ammonium removal[J]. Advanced Powder Technology, 2021, 32(6): 1833-1843.
[39]王虹 ,林建伟 ,詹艳慧 ,等.锆改性高岭土原位改良技术控制重污染河道底泥磷释放效果 [ J].环境科学 , 2015, 36(10): 3720-3729.
WANG H, LIN J L, ZHAN Y H, et al. Efficiency of sediment amendment with zirconium-modified kaolin clay to control phosphorus release from sediments in heavily polluted rivers[J]. Environmental Science, 2015, 36(10): 3720-3729.
[40]MUSCHIN T, ZULCHIN H, JIA M. Adsorption behavior of polyhydroxy -iron-modified coal-bearing kaolin for fluoride removal[J]. ChemistrySelect, 2021, 6: 3075-3083.
[41]ANNAN E, NYANKSON E, AGYEI-TUFFOUR B, et al. Synthesis and characterization of modified kaolin -bentonite composites for enhanced fluoride removal from drinking water[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-12.