(中国科学院 过程工程研究所 ,多相复杂系统国家重点实验室 ,北京 100190)
引用格式 :
邵国强 ,邹正 ,朱庆山 .难选高铁软锰矿流态化磁化焙烧 -磁选浸出工艺 [J].中国粉体技术 ,2024,30(1): 36-45.
SHAO G Q, ZOU Z, ZHU Q S. Magnetic roasting via fluidized bed and leaching procedure of refractory high-iron pyrolusite[J]. China Powder Science and Technology, 2024, 30(1): 36-45.
DOI:10.13732 / j.issn.1008-5548.2024.01.004
收稿日期 : 2023-08-17,修回日期 :2023-10-10,上线日期 :2023-12-12。
基金项目 :国家自然科学基金项目 ,编号 :22278404;中国科学院战略性先导科技专项 (A类)项目 ,编号:XDA29040200。
第一作者简介 :邵国强 (1986—) ,男,副研究员 ,硕士 ,硕士生导师 ,研究方向为矿产资源高效利用。 E-mail:gqshao@ipe.ac.cn。
通信作者简介:朱庆山(1969—),男,研究员 ,博士,国家杰出青年基金获得者,博士生导师,研究方向为矿产资源高效利用、流态化过程强化。E-mail:qszhu@home.ipe.ac.cn。
摘要:【目的】提高难选高铁软锰矿的资源利用效率 ,缓解我国锰矿资源依赖进口的现状。【方法】采用流化床反应器作为焙烧装置 ,模拟发生炉煤气气体组分作为还原气体 ,对云南省某地区的难选高铁软锰矿进行流态化磁化焙烧。对还原后的焙烧矿进行磨矿 -弱磁磁选 ,得到铁精矿和锰精矿。最后 ,对锰精矿中的锰进行酸浸浸出。【结果】在 500 ℃流态化还原焙烧 10 min,该难选高铁软锰矿即可达到最佳的还原状态效果 ,当样品的磨矿粒径 <30 μm的颗粒的质量分数为 65%时,即可达到最佳的解离效果。选别后铁精矿铁品位和回收率分别为 57. 24%和 76. 55%,锰精矿锰品位和回收率分别为 24. 41%和 73. 84%,锰精矿的铁浸出率仅有 1. 94%。【结论】考察难选高铁软锰矿流态化磁化焙烧 -磁选浸出规律 ,可以降低反应温度 ,缩短反应时间 ,低碳节能 ;抑制过还原反应的发生 ,可以提高铁资源利用率 ,降低浸出酸耗和除铁剂消耗。低能耗、低消耗和高利用率可以极大地提高难选高铁软锰矿的经济性 ,解决这部分资源难于利用的困境。
关键词:高铁软锰矿 ;流态化 ;磁化焙烧 ;锰精矿 ;铁精矿
Abstract
Objective The supply of manganese ore in China is heavily dependent on imports with its relatively deficient manganese ore resources but large demands. However, a large number of refractory high-iron pyrolusite has not been effectively utilized. Low-temperature reduction can thermodynamically inhibit the generation of faujasite and ferromanganese spinel phases, solving the problem of over-reduction of high iron soft manganese ores from the source. In order to improve the resource utilization efficiency of refractory high-iron pyrolusites, the fluidized magnetic roasting was carried out for the refractory high-iron pyrolusite from Yunnan. We hope that the methods and results of our research can help to the utilization of such resources.
Methods In this paper, Firstly, the raw ore particles with a particle size of 56 ~ 250 μm were dried and dehydrated for 24 h at 105 ℃ . After that, the pretreated particles were put into a fluidized bed reactor for the reduction reaction. Then, the roasted ore was ground and magnetically separated to obtain iron concentrate and manganese concentrate (tailings). The iron grade and manganese grade were analyzed by chemical titration to calculate the iron recovery rate and manganese recovery rate. Finally, the leaching experiment of manganese concentrate was carried out to calculate the manganese leaching rate and iron leaching rate.
Results and Discussion The results show that this procedure can lower the reaction temperature below the thermodynamic temperature of the over-reduction reaction, and the iron leaching rate of the manganese concentrate is only 1. 94%. After magnetic separation, the iron grade of the concentrate is 57. 24%, with a recovery rate of 76. 55%, while the manganese grade of the tailing is 24. 41% with a recovery rate of 73. 84%.
Conclusion The Yunnan high-iron pyrolusite used in the experiment is a case of refractory high-iron pyrolusite in China. The iron and manganese particles are associated, and the embedded particle size falls within the range of 15 to 40 μm. The manganese-iron ratio of the manganese concentrate after roasting magnetic separation can only reach 1. 07. The results show that the leaching rate of iron increases significantly above 500 ℃ , indicating the occurrence of an over-reduction reaction. Optimal reduction of the sample can be achieved when the roasting time exceeds 10 minutes. Moreover, when the sample's grinding fineness reaches a proportion of 65% with a particle size of <30 μm, the optimal separation effect can be achieved.
Significance Investigating the law of fluidized magnetization roasting-magnetic separation leaching of refractory high-iron pyrolusite can reduce the reaction temperature, shorten the reaction time, and save low-carbon energy. Additionally, inhibiting the occurrence of over-reduction reaction can improve the utilization rate of iron resources and reduce the consumption of leaching acid and iron removal agents. Low energy consumption, low consumption, and high utilization rate can greatly improve the economy of refractory high-iron pyrolusites and solve the dilemma of difficult utilization of this part of resources. Therefore, research in this area is of great significance for the efficient and comprehensive utilization of refractory high-iron pyrolusite resources.
Keywords: high-iron pyrolusite; fluidization; magnetic roasting; manganic concerntrate; iron ore concentrate
[1]梅光桂 ,张文山 ,曾湘波 ,等.中国锰业技术 [M].长沙 :中南大学出版社 , 2011: 23-31. MEI G G, ZHANG W S, ZENG X G, et al. China manganese industry technology[M]. Changsha: Central South University Press, 2011: 23-31.
[2]张汉泉 ,张鹏飞 ,许鑫 .高铁氧化锰矿综合利用现状及还原焙烧发展趋势 [ J].矿产综合利用 , 2023, 4(2):141-149. ZHANG H Q, ZHANG P F, XU X. Comprehensive utilization status of high-iron manganese oxide ore and development trend of reduction roasting[J]. Comprehensive utilization of mineral resources, 2023, 4(2): 141-149.
[3]谢丹丹 ,童雄 ,张洪花 ,等.铁锰矿的选矿工艺及其研究进展 [J].中国锰业 , 2016, 34(2): 4-7. XIE D D, TONG X, ZHANG H H, et al. Beneficiation process and research progress of ferromanganese ore[J]. China Manganese Industry, 2016, 34(2): 4-7.
[4]郭伟 ,杨亚森 ,吕慧峰 ,等.某难选贫锰铁矿的选矿试验研究 [J].现代冶金 , 2013, 41(3): 22-27. GUO W, YANG Y S, LYU H F, et al. Experimental study on beneficiation of a refractory lean manganese iron ore[J]. Modern Metallurgy, 2013, 41(3): 22-27.
[5]卢友志 ,黄润均 ,王军正 .低品位软锰矿无机还原浸出研究进展 [J].湿法冶金 , 2019, 38(6): 427-431. LU Y Z, HUANG R J, WANG J Z. Research progress on inorganic reduction leaching of low-grade pyrolusite[J]. Hydro-metallurgy, 2019, 38(6): 427-431.
[6] GAO L H, LIU Z G, YANG G, et al. Synthesis and characterization of manganese ferrite Mnx Fe3-x O4 from ferruginous manganese ores by multi-step roasting and magnetic separation[J]. Powder Technology, 2019, 365: 373-382.
[7]邵国强 ,朱庆山 ,谢朝晖 ,等.流态化低温还原氧化锰矿工艺的特点 [J].中国粉体技术 , 2019, 25(1): 87-92. SHAO G Q, ZHU Q S, XIE Z H, et al. Characteristics of the fluidized low-temperature reduction manganese oxide ore process[J]. China Powder Science and Technology, 2019, 25(1): 87-92.
[8]邵国强 ,朱庆山 ,谢朝晖 ,等.含锰磁铁相还原氧化锰矿的浸出工艺研究 [J].中国粉体技术 , 2018, 24(1): 36-40. SHAO G Q, ZHU Q S, XIE Z H, et al. Study on the leaching process of manganese-bearing magnetite phase reduction manganese oxide ore[J]. China Powder Science and Technology, 2018, 24(1): 36-40.
[9]谢朝晖 ,朱庆山 ,邵国强 ,等.氧化锰矿流态化还原技术的工业应用实践 [J].中国锰业 , 2017, 35(4): 85-96. XIE Z H, ZHU Q S, SHAO G Q, et al. Industrial application practice of fluidized reduction technology for manganese oxide ore[J]. China Manganese Industry, 2017,35(4): 85-96.
[10]朱庆山 ,李洪钟 .难选铁矿流态化磁化焙烧研究进展与发展前景 [J].化工学报 , 2014, 65(7): 2437-2442. ZHU Q S, LI H Z. Research progress and development prospect of fluidized magnetic roasting of refractory iron ore[J].CIESC Journal, 2014, 65(7): 2437-2442.
[11]李洪钟 ,郭慕孙 .回眸与展望流态化科学与技术 [J].化工学报 , 2013, 64(1): 52-59. LI H Z, GUO M S. Retrospect and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-59.
[12]ZOU Z, SHAO G Q, GE Y, et al. From laboratory research to industrial application: a green technology of fluidized mineralprocessing for manganese dioxide ore reduction[J]. Green Chemical Engineering, 2020, 1(1): 40-47.
[13]邵国强 ,朱庆山 ,谢朝晖 .软锰矿流态化低温还原实验研究 [J].中国锰业 , 2016, 34(2): 29-33. SHAO G Q, ZHU Q S, XIE Z H. Experimental study on fluidized low temperature reduction of pyrolusite[J]. China Manganese Industry, 2016, 34(2): 29-33.
[14]邵国强 ,谢朝晖 ,闫冬 ,等.强磁选和流态化磁化焙烧联合工艺回收赤泥中的铁 [J].中国粉体技术 , 2019, 25(6): 1-6. SHAO G Q, XIE Z H, YAN D, et al. Recovery of iron from red mud by a combined process of strong magnetic separation and fluidized magnetic roasting[J]. China Powder Science and Technology, 2019, 25(6): 1-6.
[15]顾群音 .煤气发生炉气化过程分析与提高煤气品质的技术措施 [J].上海理工大学学报 , 2006, 28(1): 101-102. GU Q Y. Analysis of gasification process in gasifier and technical measures for improving gas quality[J]. Journal of Shanghai University of Science and Technology, 2006, 28(1): 101-102.
[16]陆俭洁 .重铬酸钾法测定铁矿石中铁含量实验的改进 [J].中南民族学院学报 , 2000, 19(3): 81-83. LU J J. Improvement of experiment for determination of iron content in iron ore by potassium dichromate method[J].Journal of South-Central University for Nationalities, 2000, 19(3): 81-83.