(桂林电子科技大学 建筑与交通工程学院, 广西智慧交通重点实验室, 广西 桂林 541010)
引用格式:
唐咸远, 胡贤松, 罗杰, 等. 改性材料及其掺量对超高性能混凝土力学性能的影响[ J]. 中国粉体技术, 2024, 30(1):153-160.
TANG X Y, HU X S, LUO J, et al. Effects of modified materials and its contents on mechanical property of ultra-high performance concrete[J]. China Powder Science and Technology, 2024, 30(1): 153-160.
DOI:10.13732 / j.issn.1008-5548.2024.01.015
收稿日期: 2023-06-13,修回日期:2023-12-07,上线日期:2023-12-13。
基金项目:国家自然科学基金项目,编号 :42067044;广西研究生教育创新计划项目,编号:YCSW2021171。
第一作者简介:唐咸远(1973—),男,教授级高级工程师,博士,硕士生导师,研究方向为桥梁工程及高性能材料。 E-mail: thy1188@126.com。
摘要: 【目的】优选不同掺量的改性材料,并分析改性后的 UHPC 抗压强度和破坏形态,制备更加经济型的超高性能混凝土(ultra-high performance concrete,UHPC)。 【方法】选取钢渣微粉、 河砂、 粗骨料、 钢纤维作为 4 种改性材料,设计四因素三水平正交试验,根据正交试验结果制备 9 种试件;通过力学性能实验,对比分析各试件的抗压强度,优选出改性材料最佳配方并分析 UHPC 的破坏形态。 【结果】钢渣微粉、 河砂、 粗骨料和钢纤维的加入量(掺量)对试件抗压强度平均值影响的极差分别为 7. 60、 7. 57、 7. 77、 0. 84,粗骨料、 钢渣微粉、 河砂对 UHPC 的抗压强度的影响较大,钢纤维对 UHPC 抗压强度影响较小。 由正交试验结果可知,当钢渣微粉、 河砂、 粗骨料的加入量分别为 210、 855、 640 kg / m3,钢纤维的体积分数(掺量)为 1. 5%,养护龄期为 28 d 时,经改性的 UHPC 抗压强度最大,为 134. 4 MPa。 改性后的 UHPC 受压破坏时不会瞬间炸裂, 整体形态完整。 【结论】钢渣微粉和粗骨料的添加能降低改性后的 UHPC 制造成本, 经优化 4 种改性材料的掺量后 UHPC 的抗压强度降幅较小,但韧性增强,力学性能得到保障。
关键词: 超高性能混凝土; 正交试验; 抗压强度; 钢渣微粉; 钢纤维
Abstract
Objective Ultra-high performance concrete ( UHPC) exhibits remarkable properties such as high compressive strength, high toughness, and excellent durability, making it with broad application prospects. Despite its outstanding features, the high cost of UHPC has promoted research into the addition of modified materials with a certain content. This approach can effectively reduce the cost under the premise of ensuring mechanical properties. By studying the influence of different contents of steel slag powder,river sand, coarse aggregate and steel fiber on the compressive strength of UHPC and analyzing the damaged form of modified UHPC, the optimum modified material formula is determined, and the purpose of producing UHPC with low cost and good mechanical properties is realized.
Methods Steel slag powder, river sand, coarse aggregate and steel fiber were selected as four kinds of modified materials. The particle size of steel slag powder, river sand and coarse aggregate were analyzed, and the micromorphology of steel slag powder and silica fume were analyzed. Using four-factors and three-levels orthogonal tests, nine kinds of specimens were prepared and the curing ages of the specimens were set as 3, 7 and 28 days, respectively. Moreover, the compressive strength tests of the specimen were carried out, focusing on the influences of the dosage and curing age of each modified material on the compressive strength. The optimum formula of modified material was determined by the range analysis method. The damaged form of UHPC was analyzed by destructive experiment, and the toughness of the modified specimen was verified.
Results and Discussion The compressive strength range analysis shows that the compressive strength of UHPC first increases and then decreases with the increase of steel slag powder content when the addition of steel slag powder is 193, 210, 228 kg / m3 respectively. Similarly, varing the addition of river sand at 855, 1 045, 1 140 kg / m3 indicates a slowly decreasein compressive strength with the increase of river sand content. For coarse aggregate with the addition of 320, 640, 1 280 kg / m3 , the compressive strength of UHPC exhibits an intial increase followed by a subsequent decrease with the increase of coarse aggregate content.Conversely, the volume fraction of steel fiber at 1. 5%, 2. 0% and 2. 5% demonstrates a slight increase in the compressive strength with increasing steel fiber content. The range values of steel slag powder, river sand, coarse aggregate and steel fiber are 7. 60, 7. 57, 7. 77 and 0. 84, respectively. This indicates that coarse aggregate, steel slag powder and river sand have a greater influence on the compressive strength of UHPC, while steel fiber has less influence. The orthogonal test results show an optimal configuration for modified UHPC. Specifically, when the addition of steel slag powder, river sand and coarse aggregate is 210,855, 640 kg / m3 respectively, with the volume fraction of steel fiber at 1. 5%, and a curing age of 28 days, the compressive strength of the modified UHPC reaches 134. 4 MPa. Importantly, the lateral binding force provided by the steel fiber within the UHPC enhances its structural integrity, avoiding instantaneous bursting under pressure, and maintaining an intact overall shape.
Conclusion The addition of steel slag powder and coarse aggregate reduces the manufacturing cost of the modified UHPC. However, the reduction of compressive strength of UHPC is small after optimizing the content of four modified materials, but the toughness is enhanced and the mechanical properties are guaranteed.
Keywords: ultra-high performance concrete; orthogonal test; compressive strength; steel slag powder; steel fiber
参考文献(References):
[1]王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1): 141-149.
WANG D H, SHI C J, WU L M. Research and application of ultra-high performance concrete in China[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 141-149.
[2]陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2): 10-20.
CHEN B C, WEI J G, SU J Z, et al. Progress in the application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 10-20.
[3]余睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[ J]. 硅酸盐学报, 2020,48(8): 1145-1154.
YU R, FAN D Q, SHUI Z H, et al. Ultra-high performance concrete proportion design based on particle closest packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154.
[4]孙世国, 鲁艳朋. 超高性能混凝土国内外研究进展[J]. 科学技术与工程, 2018, 18(20): 184-199.
SUN S G, LU Y P. Progress of domestic and international research on ultra-high performance concrete[J]. Science Technology and Engineering, 2018, 18(20): 184-199.
[5]叶庆阳, 薛聪聪, 余敏, 等. 超高性能混凝土配合比设计与抗压强度试验研究[ J]. 工业建筑, 2020, 50( 3):124-130.
YE Q Y, XUE C C, XU M, et al. Design of ultra-high performance concrete ratio and compressive strength test research [J]. Industrial Construction, 2020, 50(3): 124-130.
[6]王虹, 郭丽萍, 孙伟, 等. 钢渣微粉对超高性能水泥基复合材料性能的影响[ J]. 混凝土与水泥制品, 2016(12):13-19.
WANG H, GUO L P, SUN W, et al. Effect of steel slag micronized powder on the performance of ultra-high performance cementitious composites[J]. China Concrete and Cement Products, 2016(12): 13-19.
[7]邹敏, 沈玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报, 2021, 40(9): 2964-2977.
ZOU M, SHEN Y, LIU J H. Review of research on the application of steel slag powder in cementitious materials [ J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2964-2977.
[8]黄政宇, 李仕根. 含粗骨料超高性能混凝土力学性能研究[J]. 湖南大学学报(自然科学版), 2018, 45(3): 47-54.
HUANG Z Y, LI S G. Mechanical properties of ultra-high performance concrete with coarse aggregates[J]. Journal of Hunan University(Natural Sciences), 2018, 45(3): 47-54.
[9]沈楚琦, 李北星. 粗骨料对超高性能混凝土力学性能的影响及拟合分析[J]. 材料科学与工程学报, 2021, 39(1):35-40.
SHEN C Q, LI B X. Effect of coarse aggregates on mechanical properties of ultra-high performance concrete and fitting analysis[J]. Journal of Materials Science and Engineering, 2021, 39(1): 35-40.
[10]陈倩. 聚丙烯纤维和粗骨料对超高性能混凝土抗拉强度的影响研究[ J]. 水利与建筑工程学报, 2019, 17( 6):113-116, 199.
CHEN Q. Study on the effect of polypropylene fibers and coarse aggregates on the tensile strength of ultra-high performance concrete[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(6): 113-116, 199.
[11]王双飞, 柯国军, 彭勃, 等. 水胶比对超高性能混凝土强度的影响[J]. 中国粉体技术, 2023, 29(2): 139-148.
WANG S F, KE G J, PENG B, et al. Effect of water-cement ratio on the strength of ultra-high performance concrete[J]. China Powder Science and Technology, 2023, 29(2): 139-148.
[12]许有俊, 李明浩, 张治华, 等. PVA 纤维对混凝土抗压强度和轴心抗压强度的影响[ J]. 化工新型材料, 2020, 48(1): 250-252.XU Y J, LI M H, ZHANG Z H, et al. Effect of PVA fiber on compressive strength and axial compressive strength of concrete[J]. New Chemical Materials, 2020, 48(1): 250-252.
[13]YANG J, CHEN B C, NUTI C. Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete[J]. Construction and Building Materials, 2021, 302: 124104.
[14]吴琛, 陈柯丹, 林上顺, 等. 免蒸养超高性能混凝土力学性能的试验[J]. 工业建筑, 2021, 51(1): 140-145.
WU C, CHEN K D, LIN S S, et al. Testing of mechanical properties of steam-free ultra-high performance concrete[ J]. Industrial Construction, 2021, 51(1): 140-145.
[15]唐咸远, 郭彬, 马杰灵, 等. 钢渣微粉对超高性能混凝土(UHPC)性能的影响[J]. 混凝土与水泥制品, 2021(11): 82-84, 89.
TANG X Y, GUO B, MA J L, et al. Effect of steel slag micronized powder on the performance of ultra-high performance concrete (UHPC)[J]. China Concrete and Cement Products, 2021(11): 82-84, 89.
[16]庞超明, 黄弘. 试验方案优化设计与数据分析[M]. 南京: 东南大学出版社, 2018: 72-86.
PANG C M, HUANG H. Experimental protocol optimization design and data analysis[M]. Nanjing: Southeast University Press, 2018: 72-86.
[17]唐佳军, 裴长春. 基于排队评分法与矩阵分析法的多指标再生混凝土力学性能的优选研究[ J]. 延边大学学报(自然科学版), 2019, 45(3): 279-282.
TANG J J, PEI C C. Preferential study on the mechanical properties of multi-indicator recycled concrete based on queuing scoring method and matrix analysis method[ J]. Journal of Yanbian University(Natural Science Edition), 2019, 45(3): 279-282.