雷 鹏1, 宋健斐1, 李 强2, 魏耀东1, 孙国刚1
(1. 中国石油大学(北京) 机械与储运工程学院, 北京 102249; 2. 北京航天动力研究所, 北京 100076)
引用格式:
雷鹏, 宋健斐, 李强, 等. 环栅式动力除尘器分离性能的数值模拟与实验[J]. 中国粉体技术, 2024, 30(1): 144-152.
LEI P, SONG J F, LI Q, et al. Numerical simulation and experiments on separation performance of cascade-ring aerodynamic dust separator[J]. China Powder Science and Technology, 2024, 30(1): 144-152.
DOI:10.13732 / j.issn.1008-5548.2024.01.014
收稿日期: 2023-07-24,修回日期:2023-11-30,上线日期:2023-12-13。
基金项目:国家自然科学基金项目,编号:21776305。
第一作者简介:雷鹏(1997—),男,硕士生,研究方向为石油化工过程设备。 E-mail: Leip221@126.com。
通信作者简介:宋健斐(1979—),女,教授,博士,博士生导师,研究方向为多相流动理论与分离技术。 E-mail: songjf@cup.edu.cn。
摘要: 【目的】为提高环栅式动力除尘器的分离性能,研究结构参数与工况参数对分离效率和压降的影响,确定最优结构参数和工况参数。 【方法】采用数值模拟方法研究结构参数对环栅式动力除尘器分离性能的影响,优化除尘器的结构参数,然后依据优化的结构参数设计除尘器,并搭建分离性能测试实验平台,研究不同工况参数对除尘器的分离效率和压降的影响,确定除尘器的最佳工况参数。 【结果】净气流以较高气速通过除尘器后部环缝,颗粒的逃逸发生在最后 2 级环缝处,最后 1 级环缝处最高气速为 57. 88 m/ s,一般逃逸颗粒的粒径≤22 μm。 环栅式动力除尘器优化结构尺寸为:筒体直径为 150 mm, 环厚度为 20 mm, 环栅数量为 20, 前 16 个环间距为 8 mm, 后 4 个环间距为 2 mm, 环高为 5 mm, 环错位为 1 mm。 环栅式动力除尘器优化工况参数为:抽气流量分数为 20%, 气速为 15 m/ s。 【结论】在最优结构参数和工况参数条件下,环栅式动力除尘器分离效率最高,模拟值更接近实验值。 颗粒质量浓度的变化对分离效率影响不大,环栅式动力除尘器适用于分离不同质量浓度的粉尘颗粒。
关键词: 环栅式动力除尘器; 分离效率; 压降; 数值模拟
Abstract
Objective Cascade-ring aerodynamic dust separator is a type of inertia dust collector that combines many advantages such as stable performance, small space occupation, various installation and arrangement methods and low operation cost. To improve the separation performance of the cascade-ring aerodynamic dust separator, it is necessary to study the effects of structural and operating parameters on the separation efficiency and pressure drop and to determine the optimal structural and operating parameters of the dust separator.
Methods Firstly, a simulation was performed by using RNG k-ε for the flow analysis, with the discrete phase models (DPM) employed to calculate the particle trajectories. The influence of ring displacement, ring height, ring numbers and ring interval distance on separation performance was investigated, and these structural parameters of the dust separator were optimised. Secondly,the dust separator was designed based on the optimised structural parameters, and the experimental platform was built. Finally,the effects of velocity, the ratio of exhausted gas to inlet gas and particle concentration on the separation efficiency and pressure drop of the dust separator were investigated to determine the optimal operating parameters of the dust separator.
Results and Discussion The gas flow passes through the ring seams at the tail of the dust separator at a high gas velocity, the particles escape at the last two ring seams. The highest air velocity at the last ring seam is 57. 88 m/ s, with the the escaped particles generally sized below 22 μm. Notably, the efficiency of the dust separator decreases as the ring displacement increases, and the ring displacement should be 1 mm. The separation efficiency reaches a maximum value of 77. 47% at a ring height of 5 mm, and the ring inclination is about 24°. The pressure drop exhibits an upward trend with increasing ring numbers, reaching a critical drop in the separation efficiency at ring numbers ≥30. Therefore, the recommended ring numbers should be 20. The highest separation efficiency of 79. 2% is achieved with a ring interval distance of 8 mm. However, to avoid the escape of particles from the ring seams of the last few stages, it is advisable to set the ring interval distance of the last few stages at 2 mm. The optimised structural parameters of the dust separator include a cylinder diameter of 150 mm, ring thickness of 20 mm, 20 ring numbers,8 mm ring interval distance of the first 16 rings, 2 mm ring interval distance of the last 4 rings, a ring height of 5 mm, and a ring displacement of 1 mm. Considering the operating parameters, the operating cascade-ring aerodynamic dust separator performs best with a ratio of exhausted gas to gas inlet gas set at 20%, and a gas velocity of 15 m/ s. Under these conditions, the experimental and simulated pressure drop are recorded at 1. 54, 1. 41 kPa, respectively, and the experimental and simulated separation efficiency are measured at 79. 15% and 92. 28%, affirming the efficacy of the optimized parameters.
Conclusion The effect of structural parameters and operation conditions on the separation performance of cascade-ring aerodynamic dust separators are investigated by numerical simulation and experimental research. The highest separation efficiency is achieved under the optimal structural and operating parameters, with simulated results closely aligning with experiment results.Moreover, the variation of particle concentration has little effect on the separation efficiency, indicating that the cascade-ring aerodynamic dust separator is suitable for separating dust particles of different concentrations.
Keywords: cascade-ring aerodynamic dust separator; separation efficiency; pressure drop; numerical simulation
参考文献(References):
[1]GUIZANI R, MHIRI H, BOURNOT P. Numerical investigation of the vortex breaker for a dynamic separator using computational fluid dynamics[J]. Journal of Applied Fluid Mechanics, 2023, 16(6): 1099-1107.
[2]WEN M N, WU Q R, LI G L, et al. Impact of ultra-low emission technology retrofit on the mercury emissions and crossmedia transfer in coal-fired power plants[J]. Journal of Hazardous Materials, 2020, 396: 122729.
[3]刘震, 杜华东, 胡旭, 等. 高压工况对天然气滤芯性能影响的实验研究[J]. 化工学报, 2021, 72(5): 2669-2679.
LIU Z, DU H D, HU X, et al. Experimental investigation of influence of high-pressure condition on filtration performance of natural gas filter cartridge[J]. CIESC Journal, 2021, 72(5): 2669-2679.
[4]LI H W, LIU J J, LIU J, et al. Numerical simulation and experiment study on efficiency of inertia separator[J]. Procedia Engineering, 2012, 29: 3227-3233.
[5]冯乐乐, 王景玉, 吴玉新, 等. 颗粒特性对撞击分离器性能影响的实验与数值研究[ J]. 化工学报, 2018, 69(8):3348-3355.
FENG L L, WANG J Y, WU Y X, et al. Experimental and numerical investigation on effect of particle characteristics on performance of plate-type impact separator[J]. CIESC Journal, 2018, 69(8): 3348-3355.
[6]雷鉴琦. 带钩波纹板烟尘惯性分离器数值模拟分析[J]. 电力科学与工程, 2022, 38(11): 73-78.
LEI J Q. Numerical simulation analysis of dust inertial separator with hook corrugated plate[J]. Electric Power Science and Engineering, 2022, 38(11): 73-78.
[7]CONNOLLY B J, LOTH E, SMITH C F. Efficiency of inertial particle separators[ J]. Powder Technology, 2023, 413:118004.
[8]张殿印, 顾海根. 回流式惯性除尘器技术新进展[J]. 环境科学与技术, 2000, 23(3): 45-48.
ZHANG D Y, GU H G. Recent advances in backflow inertial dust separation technology[ J]. Environmental Science and Technology, 2000, 23(3): 45-48.
[ 9]李伟顺, 吕佳, 王林, 等. 实用新型除尘装置: 环栅式动力除尘器[J]. 热能动力工程, 2002, 17(4): 420-422, 438.
LI W S, LV J, WANG L, et al. A novel and functional dust-removal device of the ring-grid and dynamic type[J]. Journal of Engineering for Thermal Energy and Power, 2002, 17(4): 420-422, 438.
[10]DOMNITA F. Study on mechanical separation of dust using louver type inertial separator[J]. Journal of Applied Engineering Sciences, 2014, 4(17): 19-26.
[11]HIGASHINO M, MAEDA T, FUKUI K, et al. Improvement of particle separation in louver-type separator by use of numerical simulation[J]. Journal of the Society of Powder Technology, Japan, 2015, 52(5): 252-259.
[12]SIM J B, YOON H H, WOO S H, et al. Performance estimation of a louver dust collector attached to the bottom of a subway train running in a tunnel[J]. Aerosol and Air Quality Research, 2017, 17(8): 1954-1962.
[13]BLAKE T R. Assessment of fractional collection efficiency in louvered inertial particle classifiers[J]. Powder Technology,2017, 311: 432-438.
[14]SIM J B, YEO U H, JUNG G H, et al. Enhancement of louver dust collector efficiency using modified dust container[J].Powder Technology, 2018, 325: 69-77.
[15] BABAOĜLU N U, ELSAYED K, PARVAZ F, et al. Analysis and optimization of louvered separator using genetic algorithm and artificial neural network[J]. Powder Technology, 2022, 398: 117077.
[16]林枫, 林龙, 胡启迪, 等. 环栅式动力除尘器的两相流数值模拟[J]. 热能动力工程, 2004, 19(2): 134-136, 190.
LIN F, LIN L, HU Q D, et al. Numerical simulation of two-phase flows of a cascade-ring type of aerodynamic dust collector[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(2): 134-136, 212.
[17]赵振宁, 童家麟, 叶学民, 等. 垂直浓淡煤粉燃烧器内气固两相流的数值模拟[J]. 热能动力工程, 2012, 27(5): 572-577, 625.
ZHAO Z N, TONG J L, YE X M, et al. Numerical simulation of the gas-solid two-phase flow inside a vertical bias pulverized coal burner[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(5): 572-577, 625.
[18] WU X C, WANG X, ZHOU Y G. Experimental study and numerical simulation of the characteristics of a percussive gas-solid separator[J]. Particuology, 2018, 36: 96-105.
[19]李宏伟, 刘景江, 韩海波, 等. 气力输砂试验系统惯性分离元件性能研究[J]. 计算机与应用化学, 2013, 30(3): 319-321.
LI H W, LIU J J, HAN H B, et al. Research on the performance of impact inertia separator in sand-dust test system feeding by air[J]. Computers and Applied Chemistry, 2013, 30(3): 319-321.
[20]HUANG A N, ITO K, FUKASAWA T, et al. Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation[J]. Separation and Purification Technology, 2018, 190: 25-32.