ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

放射性气溶胶同时荷电-凝并模型的开发

Development of simultaneouscharging-coagulation model for radioactive aerosols


齐志超1, 王 辉1, 孙晓晖1, 陈巧艳1, 于溯源2

(1. 中国核电工程有限公司, 北京100840;2. 清华大学能源与动力工程系, 北京100084)


引用格式:齐志超, 王辉, 孙晓晖, 等. 放射性气溶胶同时荷电-凝并模型的开发[J]. 中国粉体技术, 2023, 29(6): 115-124.

QI Z C, WANG H, SUN X H, et al. Development of simultaneous charging and coagulation model for radioactive aerosols[J]. China Powder Science and Technology, 2023, 29(6): 115-124.

DOI:10.13732/j.issn.1008-5548.2023.06.011

收稿日期:2023-06-02,修回日期:2023-09-06,在线出版时间:2023-10-10 18:12。

基金项目:国家重点研发计划项目,编号:2020YFB1901401。

第一作者简介:齐志超(1999—),男,硕士研究生,研究方向为反应堆安全分析。E-mail: thu2017qzc@163.com。

通信作者简介:王辉(1986—),男,高级工程师,研究方向为反应堆安全分析。E-mail: wanghuia@cnpe.cc。


摘要:放射性气溶胶发生衰变时会引起表面电荷累积,带电颗粒间发生静电相互作用,影响气溶胶的演化和迁移。为了探究颗粒荷电对气溶胶凝并行为的影响,从气溶胶荷电-凝并机制出发,建立完整的荷电-凝并双变量群平衡方程,使用分区法和单元平均技术数值求解。开发适用于放射性气溶胶发生的荷电-凝并行为的计算模型,使用近似解析方法和经典实验进行验证分析。结果表明:荷电-凝并模型能够准确预测与放射性气溶胶同时发生的荷电-凝并行为,对颗粒荷电对凝并动力学行为的直接影响进行阐释。

关键词:放射性气溶胶; 荷电-凝并模型; 双变量群平衡方程; 分区法

Abstract:The decay of radioactive aerosols leads to the accumulation of surface charges and the occurrence of electrostatic interactions among charged particles, thereby influencing the evolution and migration of aerosols. To study the impact of particle charging on condensation behavior, a comprehensive charging-coagulation kinetic equation was formulated. Subsequently, the bivariate group balance equation was discretized and numerically solved using the sectional method and cell average technology. A computational code was developed and validated through comparison with approximate analytical solutions and classical experiments. The results show that the simultaneous charging-coagulation model is capable to accurately predict the simultaneous charging-coagulation behavior of radioactive aerosols and elucidate the direct effect of particle charging on the coagulation behavior.

Keywords:radioactive aerosol; charging-coagulation model; bivariate population balance equation; sectional method


参考文献(References):

[1]朱继洲. 核反应堆安全分析[M]. 西安: 西安交通大学出版社, 2004.

ZHU J Z. Nuclear reactor safety analysis[M]. Xi’an: Xi’an Jiaotong University Press, 2004.

[2]颜翠平, 陈海焱, 林龙沅, 等. 放射性气溶胶净化的研究进展[J]. 中国粉体技术, 2008, 14(4): 47-50.

YAN C P, CHEN H Y, LIN L Y, et al. Progression for scavenging radioactive aerosol[J]. China Powder Science and Technology, 2008, 14(4): 47-50.

[3]王辉, 孙晓晖, 邢继, 等. 基于滑移通量模型的毛细管内气溶胶输运与滞留数值研究[J]. 原子能科学技术, 2022, 56(增1): 50-57.

WANG H, SUN X H, XING J, et al. Numerical research on aerosol transport and retention in capillary tubes based on drift-flux model[J]. Atomic Energy Science and Technology, 2022, 56(S1): 50-57.

[4]陈君岩, 高璞珍, 谷海峰, 等. 事故后聚并对亚微米气溶胶重力沉降的影响[J]. 哈尔滨工程大学学报, 2022, 43(12): 1719-1727.

CHEN J Y, GAO P Z, GU H F, et al. Effects of coagulation on the gravity deposition of submicron aerosols under severe accident conditions[J]. Journal of Harbin Engineering University, 2022, 43(12): 1719-1727.

[5]HAN S, LI Y, WEN G, et al. Study on thermophoretic deposition of micron-sized aerosol particles by direct numerical simulation and experiments[J]. Ecotoxicology and environmental safety, 2022, 233: 113316.

[6]王竞弘, 彭威, 于溯源. 核反应堆严重事故中气溶胶的吸湿增长研究进展[J]. 核动力工程, 2022, 43(2): 138-151.

WANG J H, PENG W, YU S Y. A review of research on aerosol hygroscopic growth in severe nuclear reactor accidents[J]. Nuclear Power Engineering, 2022, 43(2): 138-151.

[7]LI Y, ZHOU Y, SUN Z, et al. Analysis of hygroscopic growth properties of soluble aerosol under severe nuclear accidents conditions[J]. Progress in Nuclear Energy, 2020, 127: 103464.

[8]田林涛. 安全壳内源项气溶胶去除特性实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

TIAN L T. Experimental study on aerosol removal characteristics of source term in containment[D]. Harbin: Harbin Engineering University, 2022.

[9]万永鑫. 安全壳内气体与气溶胶输运模型开发与分析[J]. 科学技术创新, 2022(14): 169-172.

WAN Y X. Development and analysis of gas and aerosol transport models in containment[J]. Scientific and Technological Innovation, 2022(14): 169-172.

[10]MA Z, MA T, WANG B, et al. Meso-scale numerical analysis for transport and deposition behaviors of radioactive aerosols under severe nuclear accident[J]. Progress in Nuclear Energy, 2022, 150: 104314.

[11]YUAN X, WEI J, ZHANG B, et al. Development and application of an aerosol model under a severe nuclear accident[J]. Frontiers in Energy Research, 2022, 10: 200.

[12]YEH H, NEWTON G, RAABE O, et al. Self-charging of 198 Au-labeled monodisperse gold aerosols studied with a miniature electrical mobility spectrometer[J]. Journal of Aerosol Science, 1976, 7(3): 245-253.

[13]YEH H, NEWTON G, TEAGUE S. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory[J]. Health physics, 1978, 35(3): 500-503.

[14]CLEMENT C, HARRISON R. The charging of radioactive aerosols[J]. Journal of Aerosol Science, 1992, 23(5): 481-504.

[15]GENSDARMES F, BOULAUD D, RENOUX A. Electrical charging of radioactive aerosols-comparison of the Clement-Harrison models with new experiments[J]. Journal of aerosol science, 2001, 32(12): 1437-1458.

[16]孙晓晖, 孙婧, 王辉, 等. 事故工况下核电厂安全壳内放射性气溶胶电荷分布研究[J]. 原子能科学技术, 2022, 56(增1): 67-73.

SUN X H, SUN J, WANG H, et al. Study on radioactive aerosol charge distribution in containment of nuclear power plant during severe accident[J]. Atomic Energy Science and Technology, 2022, 56(S1): 67-73.

[17]PALSMEIER J F, LOYALKA S K. Evolution of charged aerosols: role of charge on coagulation[J]. Nuclear Technology, 2013, 184(1): 78-95.

[18]DE LA TORRE AGUILAR F, LOYALKA S K. Simulation of multiple-component charged aerosol evolution[J]. Nuclear Science and Engineering, 2020, 194(5): 373-404.

[19]潘陈烨. 荷电颗粒在声场中的凝并特性研究[D]. 常州: 常州大学, 2022.

PAN C Y. Study on condensation characteristics of charged particles in sound field[D]. Changzhou: Changzhou University, 2022.

[20]KIM Y H, YIACOUMI S, NENES A, et al. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere[J]. Atmospheric Chemistry and Physics, 2016, 16(5): 3449-3462.

[21]ALONSO M, HASHIMOTO T, KOUSAKA Y, et al. Transient bipolar charging of a coagulating nanometer aerosol[J]. Journal of Aerosol Science, 1998, 29(3): 263-270.

[22]ALONSO M. Simultaneous charging and Brownian coagulation of nanometre aerosol particles[J]. Journal of Physics A: Mathematical and General, 1999, 32(8): 1313-1327.

[23]ORON A, SEINFELD J H. The dynamic behavior of charged aerosols: III. Simultaneous charging and coagulation[J]. Journal of Colloid and Interface Science, 1989, 133(1): 80-90.

[24]SHARMA G, WANG Y, CHAKRABARTY R, et al. Modeling simultaneous coagulation and charging of nanoparticles at high temperatures using the method of moments[J]. Journal of Aerosol Science, 2019, 132(1): 70-82.

[25]KUMAR J, PEGLOW M, WARNECKE G, et al. The cell average technique for solving multi-dimensional aggregation population balance equations[J]. Computers &Chemical Engineering, 2008, 32(8): 1810-1830.

[26]GUNN R. Diffusion charging of atmospheric droplets by ions and the resulting combination coefficients[J]. Journal of Atmospheric Sciences, 1954, 11(5): 339-347.