ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

无铅双钙钛矿纳米粉体Cs2AgBiBr6的球磨法制备工艺与性能

Preparation process and property of lead-freedouble perovskite nano-powder Cs2AgBiBr6 by ball milling


于 颖, 曹丙强

(济南大学材料科学与工程学院, 山东济南250022)


引用格式:于颖, 曹丙强. 无铅双钙钛矿纳米粉体Cs2AgBiBr6的球磨法制备工艺与性能[J]. 中国粉体技术, 2023, 29(6): 91-100.

YU Y, CAO B Q. Preparation process and property of lead-free double perovskite nano-powder Cs2AgBiBr6 by ball milling [J]. China Powder Science and Technology, 2023, 29(6): 91-100.

DOI:10.13732/j.issn.1008-5548.2023.06.009

收稿日期:2023-07-06,修回日期:2023-09-11,在线出版时间:2023-10-09 11:51。

基金项目:国家自然科学基金项目,编号:51872161;国家重点研发计划项目,编号:2022YFC3700801。

第一作者简介:于颖(1998—),女,硕士研究生,研究方向为无铅双钙钛Cs2AgBiBr6制备技术。E-mali: 614349800@qq.com。

通信作者简介:曹丙强(1978—),男,博士,教授,博士生导师,研究方向为新能源材料与器件。E-mali: mse_caobq@ujn.edu.cn。


摘要:以溴化铯、溴化银和溴化铋为原料,采用机械球磨工艺制备无铅双钙钛矿Cs2AgBiBr6纳米粉体;在一定的球磨转速、 研磨球与物料的质量比条件下,利用X射线衍射仪、 拉曼光谱仪、 激光粒度分析仪、 扫描电子显微镜、 紫外可见分光光度计、 稳态荧光光谱和热重分析仪等手段对制得的Cs2AgBiBr6纳米粉体进行测试和表征,研究球磨时间对纳米粉体Cs2AgBiBr6的纯度、 粒径和形貌的影响,并对Cs2AgBiBr6纳米粉体进行光学性质分析和热重分析。结果表明,随着球磨时间的增加,Cs2AgBiBr6纳米粉体最终达到纯相,粒径逐渐减小至约100 nm,颗粒形状由棒状变为圆形颗粒;在球磨转速为500 r/min、研磨球与物料的质量比为4.5∶1时,最佳球磨时间为12 h;Cs2AgBiBr6粉体禁带宽度为1.97 eV,发光峰位的波长为630 nm,属可见光发光波段;Cs2AgBiBr6粉体在温度为430 ℃时发生分解,在室温下可长久保存。

关键词:球磨工艺; 无铅双钙钛矿; 球磨时间; 纳米粉体; 光学性质

Abstract:Cesium bromide, silver bromide and bismuth bromide used as raw materials, a mechanical ball milling process using a planetary ball mill was employed to prepare lead-free double perovskite Cs2AgBiBr6 nano-powder. Under fixed ball milling speed and ball-to-material mass ratio, the nano powder was characterized using X-ray diffraction, Raman spectroscopy, laser particle size analyzer, scanning electron microscope, UV-visible spectrophotometer, steady-state fluorescence spectroscopy, and thermogravimetric analysis. To investigate the influence of ball milling time on the purity, particle size, and morphology of the Cs2AgBiBr6 nano-powder, the optical properties and thermogravimetric analysis of Cs2AgBiBr6 nano powder were also carried out. The results show that Cs2AgBiBr6 nano-powder finally reach pure phase, the particle size of Cs2AgBiBr6 nano-powder gradually decrease to about 100 nm, and the particle shape changes from rod to round with the increase of milling time. When the grinding speed is 500 r/min, the mass ratio of between grinding ball and raw material is 4.5∶1, the optimal grinding time is 12 h. The band gap of Cs2AgBiBr6 powder is 1.97 eV, and the wavelength of the luminescence peak is 630 nm, which belongs to the visible light band. Cs2AgBiBr6 powder is decomposed at 430 ℃ and can be stored for a long time at room temperature.

Keywords:ball milling process; lead-free double perovskite; milling time; nano-powder; optical property


参考文献(References):

[1]ZHANG Z H, WU C C, WANG D, et al. Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping[J]. Organic Electronics, 2019, 74(11): 204-210.

[2]ZHOU Y, YUAN B L, WEI H M, et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition[J]. Applied Physics Letters, 2022, 120(11): 112109.

[3]LIU X H, YAN K, TAN D W, et al. Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%[J]. American Chemical Society Energy Letters, 2018, 3(11): 2701-2707.

[4]NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy and Environmental Science, 2014, 7(9): 3061-3068.

[5]VOLONAKIS G, FILIP M R, HAGHIGHIRAD A A, et al. Lead-free halide double perovskites via heterovalent substitution of noble metals[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1254-1259.

[6]BEKENSTEIN Y, DAHL J C, HUANG J M, et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions[J]. Nano Letters, 2018, 18(6): 3502-3508.

[7]YANG B, HONG F, CHEN J S, et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1-yBiyX6 (X: Br, Cl; 0≤y≤1) double perovskite nanocrystals[J]. Angewandte Chemie International Edition, 2019, 58(8): 2278-2283.

[8]LI Q, WANG Y G, PAN W C, et al. High pressure band gap engineering in lead-free Cs2AgBiBr6 double perovskite[J]. Angewandte Chemie International Edition, 2017, 56(50): 15969-15973.

[9]ZHANG Z Y, SUN Q D, LU Y, et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell[J]. Nature Communications, 2022, 13(1): 3397.

[10]HE Y Z, ZHOU Y F, WANG Q, et al. Design and performance exploration of a lead-free all-inorganic hydrogenated Cs2AgBiBr6-based double perovskite solar cell: a numerical modeling study[J]. Solar Rapid Research Letters, 2023, 7(10): 2300030.

[11]YANG J, BAO C X, NING W H, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films[J]. Advanced Optical Materials, 2019, 7(13): 1801732.

[12]WU D F, TAO Y, HUANG Y Y, et al. High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals[J]. Journal of Catalysis, 2021, 397(5): 27-35.

[13]YANG L, LI Y P, ZHANG W, et al. Promoting optoelectronic properties of Cs2AgBiBr6 nanocrystals by formation of heterostructures with BiOCl nanosheets[J]. Chemical Communications, 2022, 58(56): 7765-7768.

[14]JIANG Y Q, LI K, WU X, et al. In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution[J]. American Chemical Society Applied Materials and Interfaces, 2021, 13(8): 10037-10046.

[15]LOW Y J, LIEW J , KAMARUDIN M A, et al. Synthesis of cesium silver bismuth bromide double perovskite nanoparticles via a microwave-assisted solvothermal method[J]. Materials Today Chemistry, 2023, 29(3):101477.

[16]ZHU Z Y, YANG Q Q, GAO L F, et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1610-1614.

[17]SADHUKHAN P, KUNDU S, ROY A, et al. Solvent-free solid-state synthesis of high yield mixed halide perovskites for easily tunable composition and band gap[J]. Crystal Growth and Design, 2018, 18(6): 3428-3432.

[18]BRETERNITZ J, LEVCENKO S, HEMPEL H, et al. Mechanochemical synthesis of the lead-free double perovskite Cs2[AgIn]Br6 and its optical properties[J]. Journal of Physics: Energy, 2019, 1(2): 025003.

[19]MUSCARELLA L A, HUTTER E M. Halide double-perovskite semiconductors beyond photovoltaics[J]. American Chemical Society Energy Letters, 2022, 7(6): 2128-2135.

[20]HAN D, ZHANG T, HUANG M L, et al. Predicting the thermodynamic stability of double-perovskite halides from density functional theory[J]. Applied Physics Letters Materials, 2018, 6(8): 084902.