ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

球磨介质对氮化硅粉体的微观形貌和表面氧化硅层的影响

Effect of ball milling medium on morphology andsurface silicon oxide layer of silicon nitride powder

郗 威, 周杨杨, 刘鹏飞, 韩 召

(安徽工业大学冶金工程学院, 安徽马鞍山243000)


引用格式:郗威, 周杨杨, 刘鹏飞, 等. 球磨介质对氮化硅粉体的微观形貌和表面氧化硅层的影响[J]. 中国粉体技术, 2023, 29(6): 82-90.

XI W, ZHOU Y Y, LIU P F, et al. Effect of ball milling medium on morphology and surface silicon oxide layer of silicon nitride powder[J]. China Powder Science and Technology, 2023, 29(6): 82-90.

DOI:10.13732/j.issn.1008-5548.2023.06.008

收稿日期:2023-06-25,修回日期:2023-09-12,在线出版时间:2023-10-09 09:25。

基金项目:国家自然科学基金项目,编号:52072381。

第一作者简介:郗威(1998—),男,硕士研究生,研究方向为氨解法制备氮化硅粉体。E-mail: 1478913946@qq.com。

通信作者简介:韩召(1977—),男,副教授,博士,硕士生导师,研究方向为氮化硅粉体制备及应用技术。E-mail: authan@163.com。


摘要:氮化硅(Si3N4)粉体极易氧化,表面氧化硅层氧含量过高会对Si3N4陶瓷的力学性能和导热性能产生不利影响。在球磨法细化Si3N4粉体过程中,分别选取去离子水、 无水乙醇和质量分数为20%的氢氧化钠(NaOH)溶液作为3种球磨介质,研究不同球磨介质对细化后的Si3N4纳米粉体的颗粒粒径和表面氧化硅层氧含量的影响;采用X射线衍射分析仪、 激光粒径仪、 场发射扫描电子显微镜、 高分辨透射电子显微镜、 氧氮分析仪、傅里叶变换红外光谱仪和X射线光电子能谱仪分析Si3N4纳米粉体的物相组成、 粒径分布、 微观形貌、 表面氧化硅层的氧含量、 化学基团和化学键种类及浓度;探讨碱液法球磨制备表面氧化硅层的氧含量较低的Si3N4粉体的机制。结果表明:以NaOH溶液为球磨介质时,Si3N4粉体先与水反应生成非晶氧化硅层, NaOH再和氧化硅层发生反应, 球磨过程加速了Si3N4粉体表面氧化硅层的溶解和剥离, 降低了表面氧化硅层的氧含量, 减小了颗粒粒径, 实现了Si3N4粉体的细化; 表面氧化硅层的氧的质量分数从1.00%仅增加到1.25%, 颗粒平均粒径从3.50 μm减小为0.71 μm,微观形貌由长条状变成分散性较好的球形颗粒;球磨后的Si3N4纳米粉体的O—Si—O键的物质的量浓度从15.06%减小为11.24%;与去离子水和无水乙醇相比,以NaOH溶液为最优球磨介质。

关键词:球磨介质; 氮化硅粉体; 颗粒微观形貌; 表面氧化硅层; 氧含量

Abstract:Silicon nitride (Si3N4) powder is prone to oxidation, and high oxygen content of surface silicon oxide layer have adverse effects on the mechanical and thermal conductivity of Si3N4 ceramics. In the process of refining Si3N4 powder by ball milling, deionized water, anhydrous ethanol and 20% sodium hydroxide (NaOH) solution were selected as ball milling media, respectively. X-ray diffraction analyzer, laser particle size analyzer, field emission scanning electron microscope, high resolution transmission electron microscope, oxygen nitrogen analyzer, Fourier transform infrared spectrometer and X-ray photoelectron spectrometer were used to analyze the phase composition, particle size distribution, morphology, oxygen content of surface silicon oxide layer, chemical group and chemical bond type and concentration of Si3N4 nano powder. The mechanism of preparing Si3N4 powder with low oxygen content of surface silicon oxide layer by alkaline ball milling was explored. The results show that when NaOH solution is used as the ball milling medium, Si3N4 powder first reacts with water to form a surface silicon oxide layer,and then NaOH reacts with the surface silicon oxide layer. The ball milling process accelerates the dissolution and peeling of the amorphous silicon oxide layer on the surface of Si3N4 powder, reduces oxygen content of surface silicon oxide layer and particle size, and achieves the refinement of Si3N4 powder.The mass fraction of oxygen in Si3N4 powder only increase from 1.00% to 1.25%, but the particle size decrease from 3.50 μm to 0.71 μm. The morphology changed from long strip to good dispersive spherical particles. The O—Si—O bond content of ball milled Si3N4 nano powder decreases from 15.06% to 11.24%. Compared with deionized water and anhydrous ethanol, NaOH solution is the optimal milling medium.

Keywords:ball milling medium; silicon nitride power; morphology; surface silicon oxide layer; oxygen content


参考文献(References):

[1]HU Z, LIU J, XIE Z P. Synthesis of α-Si3N4 whiskers or equiaxed particles from amorphous Si3N4 powders[J]. Ceramics International, 2020, 46: 23734-23741.

[2]WANG C L, ZHANG J Y, LEI L W, et al. Effect of particle size on silicon nitride ceramic slurry by stereolithography[J]. Journal of Wuhan University of Technology, 2023, 38(3): 514-519.

[3]YAN Q Z, HUANG J W, DONG X F, et al. Influence of α-Si3N4 coarse powder on densification, microstructure, mechanical properties, and thermal behavior of silicon nitride ceramics[J]. Ceramics International, 2023, 49(13): 21815-21824.

[4]向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84.

XIANG M Q, GENG Y Q, ZHU Q S. Research advances in preparation technology and quality of silicon nitride powder[J]. Journal of Chemical Industry and Engineering(China), 2022, 73(1): 73-84.

[5]秦笑威, 谢志鹏, 姚依旦, 等. 氮化硅陶瓷的烧结技术及其应用进展[J]. 陶瓷学报, 2022, 43(6): 971-986.

QIN X W, XIE Z P, YAO Y D, et al. Progress in sintering technology and applications of silicon nitride ceramics[J]. Journal of Ceramics, 2022, 43(6): 971-986.

[6]QIU L Y, GUZONAS D A, QIAN J. Corrosion of silicon nitride in high temperature alkaline solutions[J]. Journal of Nuclear Materials, 2016, 476: 293-301.

[7]ARAI M. Degradation of bending strength occurred by corrosion of sintered silicon nitride in aqueous acidic solutions[J]. Mechanical Engineering Journal, 2018, 5(2): 384.

[8]GU Q, ZHANG J, LI H X, et al. Synthesis of α-Si3N4 powder by high energy ball milling assisting molten salt nitridation method at low temperature[J]. Ceramics International, 2019, 45(15): 18445-18451.

[9]ASSOC P, TOMISLAV F, CRISTINA M, et al. Mechano-chemistry for synthesis[J]. Angewandte Chemie, 2020, 132(3): 1030-1041.

[10]毕文娟, 李家柱, 赵兴祥, 等. NaOH处理对氮化硅粉体表面性质的影响研究[J]. 广州化工, 2018, 46(3): 25-28.

BI W J, LI J Z, ZHAO X X, et al. Influence of NaOH treatment on surface properties of silicon nitride powder[J]. Guangzhou Chemical Industry, 2018, 46(3): 25-28.

[11]张志刚, 刘宜汉, 罗洪杰, 等. 低温固相反应法制备NiFe2O4纳米粉及机理研究[J]. 东北大学学报(自然科学版), 2015, 36(8): 1141-1145.

ZHANG Z G, LUN Y H, LUO H J, et al. Synthesis of NiFe2O4 nano-powder by low-temperature solid-state reaction and its mechanism[J]. Journal of Northeastern University(Natural Science), 2015, 36(8): 1141-1145.

[12]HU Z L, ZHU T B, WU W W, et al. Growth mechanism of α-Si3N4 submicron rods prepared from amorphous Si3N4 powders[J]. Ceramics International, 2018, 44: 22003-22007.

[13]XU B J, LI M X, CHEN Q, et al. A novel method to improve the dispersibility of silicon nitride powders in aqueous media[J]. Nano, 2019, 14(9): 1-10.

[14]AVOTINA L, PAJUSTE E, ROMANOVA M, et al. Surface morphology of single and multi-layer silicon nitride dielectric nano-coatings on silicon dioxide and polycrystalline silicon[J]. Materials Science, 2019, 26(1): 25-29.

[15]AVOTINA L, PAJUSTE E, ROMANOVA M, et al. FTIR analysis of electron irradiated single and multilayer Si3N4 coatings[J]. Key Engineering Materials, 2018, 788: 96-101.

[16]NI Z, JIANG X F. Surface characterization of silicon nitride powder and electro-kinetic behavior of its aqueous suspension [J]. Ceramics International, 2020, 46(7): 9530-9537.

[17]蔡艳华, 彭汝芳, 马冬梅, 等. 机械力化学应用研究进展[J]. 无机盐工业, 2008(8): 7-10.

CAI Y H, PENG R F, MA D M, et al. Research progress on application of mechanochemistry[J]. Inorganic Chemicals Industry, 2008(8): 7-10.

[18]WHITMAN P K, FEKE D L. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders[J]. Advanced Ceramic Materials, 1986, 1(4): 366-370.

[19]DANTE R C, KAJDAS C K. A review and a fundamental theory of silicon nitride tribochemistry[J]. Wear, 2012, 288: 27-38.