ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

超细石墨复合改性水泥石的导热性能

Thermal conductivity of cement stone modified with superfine graphite

苏晓悦1, 刘平江2, 张 晔2, 田宝振2, 高 飞2, 梅开元1,3, 程小伟1

(1.西南石油大学新能源与材料学院, 四川成都610000; 2.中国石油集团渤海钻探工程有限公司第一固井分公司,天津062552; 3.中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北武汉430071)


引用格式:苏晓悦, 刘平江, 张晔, 等. 超细石墨复合改性水泥石的导热性能[J]. 中国粉体技术, 2023, 29(6): 61-71.

SU X Y, LIU P J, ZHANG Y, et al. Thermal conductivity of cement stone modified with superfine graphite[J]. China Powder Science and Technology, 2023, 29(6): 61-71.

DOI:10.13732/j.issn.1008-5548.2023.06.006

收稿日期:2023-04-21,修回日期:2023-09-12,在线出版时间:2023-10-09 09:51。

基金项目:国家自然科学基金项目,编号:42207206。

第一作者简介:苏晓悦(1998—),女,硕士研究生,研究方向为固井水泥石的导热性能。E-mail: 675820894@qq.com。

通信作者简介:程小伟(1977—),男,教授,博士,博士生导师,研究方向为先进胶凝材料与其在固井材料中的应用。E-mail: chengxw@swpu.edu.cn。


摘要:为提高地热的开采效率, 在地热井采热段应使用具有高导热性能的固井材料。 以超细石墨为提高导热性能的掺合料, 选用十二烷基苯磺酸钠作为分散剂提高超细石墨在水泥浆中的分散稳定性; 优选出适合的超细石墨分散液后, 进一步制备超细石墨复合改性水泥石(简称为水泥石)作为固井材料; 研究超细石墨掺量对水泥石的抗压强度和导热性能的影响; 运用XRD、 TG、 MIP、 SEM测试和表征水泥石的物相组成、 孔隙率和结构致密性,研究不同掺量的超细石墨对水泥石导热性能的影响; 探讨不同石墨掺量和孔隙率条件下的水泥石导热机制。 结果表明: 随着超细石墨掺量的增大,水泥石的导热系数先增大后减小,当超细石墨质量分数为12%时,水泥石导热系数达到最大值,为2.45 W/(m·K); 超细石墨的导热性能、 孔隙率与水化产物的含量均可影响水泥石导热性能; 随着超细石墨掺量的增大, 水泥石的抗压强度先增大后减小; 综合考虑水泥石的导热性能与力学性能, 超细石墨的优选质量分数应为10%~12%。

关键词:地热能; 固井材料; 超细石墨; 改性; 水泥石; 导热性能

Abstract:In order to improve the exploitation efficiency of geothermal energy, cementing materials with high thermal conductivity should be used in the heat recovery section of geothermal wells. Superfine graphite was used as an admixture to improve thermal conductivity, and sodium dodecyl benzene sulfonate was used as a dispersant to improve the dispersion stability of superfine graphite in cement slurry. After the suitable superfine graphite dispersion was selected, superfine graphite composite modified cement stones (referred to as cement stones) were further prepared as the cement materials. The effects of superfine graphite content on compressive strength and thermal conductivity of cement stones were studied. The phase composition, porosity and structural compactness of cement stones were tested and characterized by XRD, TG, MIP and SEM. The effects of different contents of superfine graphite on the thermal conductivity of cement stones were studied. The thermal conductivity mechanism of cement stones under different graphite contents and porosity were discussed also. The results show that with the increase of the content of superfine graphite, the thermal conductivity of cement stones first increases and then decreases. When the content of superfine graphite is 12%, the thermal conductivity of cement stone reaches the maximum value of 2.45 W/(m·K). The high thermal conductivity of superfine graphite, the porosity and the mass fraction of hydration products can affect the thermal conductivity of cement stone. With the increase of superfine graphite content, the compressive strength of cement stones first increases and then decreases. Considering the thermal conductivity and mechanical properties of cement stones, the optimal mass fractions of superfine graphite should be from 10% to 12%.

Keywords:geothermal energy; cementing material; superfine graphite; modification; cement stone; thermal conductivity


参考文献(References):

[1]SU Y, YU Y Q. Spatial agglomeration of new energy industries on the performance of regional pollution control through spatial econometric analysis[J]. Science of the Total Environment, 2020, 704: 135261.

[2]HAN J Y, CUI M H, CHEN J Y, et al. Analysis of thermal performance and economy of ground source heat pump system: a case study of the large building[J]. Geothermics, 2021, 89: 101929.

[3]LI H X, EDWARDS D J, HOSSEINI M R, et al. A review on renewable energy transition in Australia: an updated depiction[J]. Journal of Cleaner Production, 2020, 242: 118475.

[4]LIU F, LONG X T. Investigation on geological structure and geothermal resources using seismic exploration[J]. Geothermics, 2022, 106: 102572.

[5]赵斌, 吕玥, 温柔, 等. 西藏地热能开发利用现状及发展前景[J]. 热力发电, 2023, 52(1): 1-6.

ZHAO B, LV Y, WEN R, et al. Present situation and development prospect of geothermal energy development and utilization in Tibet[J]. Thermal Electric Generation, 2023, 52(1): 1-6.

[6]XU Y, LI Z J, TAO M, et al. An investigation into the effect of water injection parameters on synergetic mining of geothermal energy in mines[J]. Journal of Cleaner Production, 2023, 382: 135256.

[7]方姚. 面向中深层地热井的固井复合材料性能研究与井下换热过程模拟[D]. 南京: 东南大学, 2019.

FANG Y. Study on the performance of cementing composite materials and simulation of downhole heat transfer process for mid-deep geothermal wells[D]. Nanjing: Southeast University, 2019.

[8]KOHL T, BRENNI R, EUGSTER W. System performance of a deep borehole heat exchanger[J]. Geothermics, 2002, 31(6): 687-708.

[9]SONG X Z, WANG G S, SHI Y, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310.

[10]张浩, 徐拴海, 杨雨, 等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探, 2020, 48(2): 195-201.

ZHANG H, XU S H, YANG Y, et al. Influencing factors of thermal conductivity of geothermal well cementing materials[J]. Coal Geology and Exploration, 2020, 48(2): 195-201.

[11]INGRID STOBER K B. Geothermal energy[M]. Freiburg im Breisgau: Springer Nature, 2021: 10-11.

[12]彭铖, 陈宇恒, 倪浩伟, 等. 铜水泥基复合材料导热流动特性研究[J]. 环境与发展, 2019, 31(8): 130-132.

PENG C, CHEN Y H, NI H W, et al. Study on thermal conductivity and flow characteristics of copper cement-based composites[J]. Environment and Development, 2019, 31(8): 130-132.

[13]YANG Y, WANG K P, ZHANG H, et al. Investigation on the preparation, properties, and microstructure of high thermal conductive cementing material in 3 500 m-deep geothermal well[J]. Geothermics, 2022, 100: 102322.

[14]DU Y F, HUANG W, DAI M X, et al. Using silicon carbide to increase thermal conductivity of cement composite for improving heating efficiency of floor heating system[J]. Construction and Building Materials, 2022, 325: 126707.

[15]WANG S, JIAN L M, SHU Z H, et al. A high thermal conductivity cement for geothermal exploitation application[J]. Natural Resources Research, 2020, 29(6): 3675-3687.

[16]CHUNG W, CHOI Y C. Investigation of the effects of CNT dosages on the hydration and heating properties of cement composites with low water-to-binder ratio[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2018, 22(6): 182-188.

[17]DU Y B, GE Y. Multiphase model for predicting the thermal conductivity of cement paste and its applications[J]. Materials, 2021, 14(16): 4525.

[18]MAKSYMILIAN F, WOJCIECH S, PAULINA S, et al. Grouts with highly thermally conductive binder for low-temperature geothermal applications[J]. Construction and Building Materials, 2021, 295: 123680.

[19]PAPANIKOLAOU I, LITINA C, ZOMORODIAN A, et al. Effect of natural graphite fineness on the performance and electrical conductivity of cement paste mixes for self-sensing structures[J]. Materials, 2020, 13(24): 5833.

[20]CERNY V, YAKOVLEV G, DROCHYTKA R, et al. Impact of carbon particle character on the cement-based composite electrical resistivity[J]. Materials, 2021, 14(24): 7505.

[21]WANG D Q, WANG Q, HUANG Z X. Investigation on the poor fluidity of electrically conductive cement-graphite paste: experiment and simulation[J]. Materials and Design, 2019, 169: 107679.

[22]佟钰, 闫海敏, 王昭宁, 等. 纳米二氧化硅粒径对水泥砂浆抗压强度及抗氯离子渗透性能的影响[J]. 中国粉体技术, 2022, 28(5): 11-16.

TONG Y, YAN H M, WANG Z N, et al. Effect of nano-silica particle size on compressive strength and chloride ion permeability of cement mortar[J]. China Powder Science and Technology, 2022, 28(5): 11-16.

[23]邓钏, 葛晓陵, 尹力, 等. 石墨烯的制备及石墨的剥离与团聚力学性能研究[J]. 中国粉体技术, 2016, 22(1): 56-62.

DENG C, GE X L, YIN L, et al. Study on the preparation of graphene and the mechanical properties of exfoliation and agglomeration of graphite[J]. China Powder Science and Technology, 2016, 22(1): 56-62.

[24]LI L C, ZHOU M, JIN L, et al. Green preparation of aqueous graphene dispersion and study on its dispersion stability[J]. Materials, 2020, 13(18): 4069.

[25]QOMI M J A, ULM F J, PELLENQ R J M. Physical origins of thermal properties of cement paste[J]. Physical Review Applied, 2015, 3(6): 064010.

[26]吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979(3): 262-270.

WU Z W. Discussion on recent development direction of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979(3): 262-270.