伍永福1a, 栗 志1a, 张学锋1a,2, 王振峰1b,3, 刘中兴1b
(1. 内蒙古科技大学a. 能源与环境学院, b. 材料与冶金学院, 内蒙古包头014000;2. 山西北方恒通动力系统有限公司, 山西大同037000;3. 轻稀土清洁提取与应用内蒙古自治区工程研究中心, 内蒙古包头014010)
引用格式:伍永福, 栗志, 张学锋, 等. 雾化焙烧制备超细颗粒用旋风分离器优化模拟[J]. 中国粉体技术, 2023, 29(6): 39-49.
WU Y F, LI Z, ZHANG X F, et al. Optimized simulation of cyclone separator for preparation of ultrafine particles by atomization roasting[J]. China Powder Science and Technology, 2023, 29(6): 39-49.
DOI:10.13732/j.issn.1008-5548.2023.06.004
收稿日期:2023-06-05,修回日期:2023-09-12,在线出版时间:2023-09-28 11:38。
基金项目:国家自然科学基金项目,编号:51964039; 内蒙古自治区自然科学基金项目,编号:2022LHMS05004;内蒙古自治区应用技术研究与开发资金项目,编号:2021GG0103;白云鄂博稀土资源研究与综合利用国家重点实验室开放基金资助项目,编号:2021H2275; 企业课题:稀土萃取液直接制备稀土抛光材料。
第一作者简介:伍永福(1974—), 男, 教授,博士, 硕士生导师, 研究方向为冶金热过程绿色低碳新技术开发与应用。E-mail: wyf07@imust.edu.cn。
通信作者简介:王振峰(1984—),男,讲师,博士,硕士生导师,研究方向为稀土绿色冶金技术开发。E-mail: wzhf2010@126.com。
摘要:旋风分离器是雾化焙烧制备稀土氧化物工艺中的常用分离设备之一。为了提高焙烧产物中超细颗粒的分离效率,采用Fluent数值模拟和实验验证相结合的方法,得到旋风分离器的优化构型,利用颗粒分离效率和流体压降2项指标进行评价,以探讨扩张结构旋风分离器的优化效果。结果表明:在锥筒高度为距旋风分离器顶板370 mm处,进行角度为10°的扩张改进后,分离器对粒径为1、 3、 5 μm的颗粒分离效率分别提高13.25%、 42.33%、 44.02%,阻力系数减小3.6%;新改进结构旋风分离器在降低能耗的同时提高分离效率。
关键词:雾化焙烧; 旋风分离器; 超细颗粒; 数值模拟
Abstract:Cyclone separator is one of the commonly used separation equipment in the process of preparing rare earth oxides by atomization roasting. In order to improve the separation efficiency of ultrafine particles in the calcinated products, Fluent numerical simulation and experimental verification were combined to obtain the optimal configuration of the cyclone separator. The particle separation efficiency and fluid pressure drop were evaluated to explore the optimization effect of the expanded structure cyclone. The results show that the separation efficiency of 1, 3 and 5 μm particles is increased by 13.25%, 42.33% and 44.02%, respectively, and the drag coefficient is reduced when cone height is 370 mm away from cyclone top plate and the Angle of expansion improvement is 10°. The cyclone separator of new improved structure can reduce energy consumption and improve the separation efficiency.
Keywords:atomized roasting; cyclone separator; ultrafine particles; numerical simulation
参考文献(References):
[1]王振峰. 氯化物溶液喷雾热解焙烧合成RE/AL复合氧化物的研究[D]. 沈阳: 东北大学, 2018.
WANG Z F. Study on the synthesis of RE/AL composite oxides by spray pyrolysis roasting of chloride solution[D]. Shenyang: Northeastern University, 2018.
[2]洪运涛, 乔梁, 刘新华. Ruthner-喷雾焙烧法废盐酸再生技术在冷轧中的应用[J]. 现代化工, 2005(1): 48-50.
HONG Y T, QIAO L, LIU X H. Application of Ruthner spray roasting waste hydrochloric acid regeneration technology in cold rolling[J]. Modern Chemical Industry,2005(1): 48-50.
[3]苗坤宏, 崔彭帝, 薛启隆, 等. 金银花颗粒在旋风分离器中的流场数值模拟分析[J]. 中草药, 2023(4): 1087-1097.
MIAO K H, CUI P D, XUE Q L, et al. Numerical simulation analysis of flow field of honeysuckle particles in a cyclone separator[J]. Chinese Herbal Medicine, 2023(4): 1087-1097.
[4]刘鹏飞, 王小文, 郝利炜, 等. 双出口旋风除尘器压损和分离效率的模拟研究[J]. 中国水泥, 2023(2): 61-64.
LIU P F, WANG X W, HAO L W, et al. Simulation study on pressure loss and separation efficiency of dual outlet cyclone dust collector[J]. China Cement, 2023(2): 61-64.
[5]闫思博, 单学军, 刘芳芳. 旋风分离器分离效率影响因素分析[J]. 水泥工程, 2022(4): 12-16.
YAN S B, SHAN X J, LIU F F. Analysis of factors influencing the separation efficiency of cyclone separators[J]. Cement Engineering, 2022(4): 12-16.
[6]曹骞, 康灿, 滕爽, 等. 非球形固体颗粒对弯管内壁的磨损机制[J]. 摩擦学学报, 2022, 42(6): 1094-1104.
CAO Q, KANG C, TENG S, et al. Mechanisms of wear of the inner wall of the elbow pipe interacting with non-spherical solid particles[J]. Tribology, 2022, 42(6): 1094-1104.
[7]CHEN C Y, TSENG T K, TSAI S C, et al. Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis[J]. Ceramics International, 2008, 34(2): 409-416.
[8]陈玉祥. 超声波微波喷雾热解法制备氧化锡纳米粉体的研究[D]. 昆明: 昆明理工大学, 2014.
CHEN Y X. Study on preparation of tin oxide nanoparticles by ultrasonic microwave spray pyrolysis[D]. Kunming: Kunming University of Science and Technology, 2014.
[9]李赛楠. 稀土氯化物液滴运动规律对制备稀土纳米氧化物的影响[D]. 包头: 内蒙古科技大学, 2020.
LI S N. The influence of the movement law of rare earth chloride droplets on the preparation of rare earth nano oxides[D]. Baotou: Inner Mongolia University of Science and Technology, 2020.
[10]李兵科. 高黏度液体同轴三通道喷嘴气力雾化特性研究[D]. 北京: 中国运载火箭技术研究院, 2021.
LI B K. Research on pneumatic atomization characteristics of coaxial three channel nozzle for high viscosity liquid[D]. Beijing: China Academy of Launch Vehicle Technology, 2021.
[11]LENG J, WANG Z, LI X, et al. Accurate construction of a hierarchical nickel-cobalt oxide multishell yolk-shell structure with large and ultrafast lithium storage capability[J]. Journal of Materials Chemistry A, 2017, 5(29): 14996-15001.
[12]伍永福, 刘豪晶, 刘中兴, 等. 单液滴CeCl3溶液直接制备氧化铈的反应动力学研究[J]. 稀土, 2021, 42(5): 104-111.
WU Y F, LIU H J, LIU Z X, et al. Study on the reaction kinetics of direct preparation of cerium oxide from single droplet CeCl3 solution[J]. Rare Earth, 2021, 42(5): 104-111.
[13]ZHANG U, YI W, XIN Z, et al. Controllable morphology, size and inner structure of Ru particles prepared by spray-pyrolysis[J]. International Journal of Refractory Metals &Hard Materials, 2019, 78: 326-331.
[14]LIM C H, LEE K T. Characterization of core-shell structured Ni@GDC anode materials synthesized by ultrasonic spray pyrolysis for solid oxide fuel cells[J]. Ceramics International, 2016, 42(12): 13715-13722.
[15]黄绍东, 郝先库, 张瑞祥, 等. 火焰喷雾热解法合成稀土氧化物[J]. 稀土, 2017, 38(6): 125-136.
HUANG S D, HAO X K, ZHANG R X, et al. Synthesis of rare earth oxides by flame spray pyrolysis[J]. Rare Earth, 2017, 38(6): 125-136.
[16]王斌, 沈聪, 王佳音, 等. 旋风分离器内细颗粒浓度分布及运动分析[J]. 化工学报, 2020, 71(增刊2): 201-209.
WANG B, SHEN C, WANG J Y, et al. Concentration distribution and motion analysis of fine particles in cyclone separator[J]. Journal of Chemical Engineering, 2020, 71(Suppl.2): 201-209.
[17]MOTHES H. Bewegung und abscheidung der partikeln im zyklon[D]. Karlsruhe: Technical University Karlsruhe, 1982.
[18]KIRCH R. Der Einfluβder Turbulenz auf die partikelbewe-gung im gaszyklon[D]. Karlsruhe: Technical University Karlsruhe, 1982.
[19]吴小林, 王红菊, 时铭显. 防返混锥对旋风分离器旋进涡核的抑制作用[J]. 石油大学学报, 2001, 25(3): 71-73.
WU X L, WANG H J, SHI M X, et al. The inhibitory effect of the anti-return mixing cone on the vortex core of the cyclone separator[J]. Journal of the University of Petroleum, 2001, 25(3): 71-73.
[20]HOFFMANN A C, DE JONGE R, ARENDS H, et al. Evidence of the natural vortex length and its effect on the separation efficiency of gas cyclones[J]. Filtration &Sparation, 1995, 32(8): 799-804.
[21]STEFAN O, JAKOB W, GEMOT S. Investigation of the flow pattern in different dust oulet geometries of a gas cyclone by laser doppler anemometry[J]. Powder Technology, 2003, 138(2/3): 239-251.
[22]申屠云奇, 宋煜晨, 尹俊连, 等. 扩散角对文丘里管内湍流影响的试验研究[J]. 核动力工程, 2021, 42(2): 16-22.
SHENTU Y Q, SONG Y C, YIN J L, et al. Experimental study on effect of diffusion angle on turbulence in Venturi tube[J]. Nuclear Power Engineering, 2021, 42(2): 16-22.
[23]汪靓仔, 崔小朝, 蔡明, 等. 拉格朗日-雷诺应力模型在后台阶颗粒流中的运用[J]. 太原科技大学学报, 2011(5): 406-409.
WANG L Z, CUI X C, CAI M, et al. Application of Lagrangian Reynolds stress model in backward step particle flow[J]. Journal of Taiyuan University of Science and Technology, 2011(5): 406-409.
[24]李琴, 邹康, 刘海东, 等. 基于颗粒受力的旋风分离器冲蚀机理的研究[J]. 流体机械, 2017, 45(3): 42-47.
LI Q, ZOU K, LIU H D, et al. The erosion mechanism research of cyclone based on force operating of particles[J]. Fluid Machinery, 2017, 45(3): 42-47.
[25]罗骁, 徐茂钦, 张丽, 等. 旋风分离器颗粒运动规律的数值模拟研究[J]. 南方农机, 2021, 52(7): 37-39.
LUO X, XU M X, ZHANG L, et al. Numerical simulation study on particle motion law of cyclone separator[J]. China Southern Agricultural Machinery, 2021, 52(7): 37-39.
[26]RODON I, LEE K C, PFEFFER R, et al. Granular-bed filtration assisted by filter-cake formation: the panel bed gas filter with puffback renewal of gas-entry surfaces[J]. Powder Technology, 2005(1): 52-61.
[27]王锁芳, 赵浩宇, 柴金孟, 等. 出口结构对轴流式旋风分离器性能影响的数值模拟[J/OL]. 安全与环境学报. (2023-02-28)[2023-06-10]. https://doi.org/10.13637/j.issn.1009-6094.2022.2669.
WANG S F,ZHAO H Y,CHAI J M,et al. Numerical simulation of the effect of outlet structure on the performance of axial flow cyclone separators[J/OL]. Journal of Safety and Environment.(2023-02-28)[2023-06-10].https://doi.org/10.13637/j.issn.1009-6094.2022.2669.