ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

旧水泥混凝土路面超薄水泥基加铺材料配合比优化

Mix proportion optimization of ultra-thin cement-based paving materials forold cement concrete pavement

马士宾, 侯立成, 刘月钊, 张俊飞

(河北工业大学土木与交通学院, 天津300400)


引用格式:马士宾, 侯立成, 刘月钊, 等.旧水泥混凝土路面超薄水泥基加铺材料配合比优化[J]. 中国粉体技术, 2023, 29(6): 27-38.

MA S B, HOU L C, LIU Y Z, et al. Mix proportion optimization of ultra-thin cement-based paving materials for old cement concrete pavement[J]. China Powder Science and Technology, 2023, 29(6): 27-38.

DOI:10.13732/j.issn.1008-5548.2023.06.003

收稿日期:2023-05-17,修回日期:2023-06-14,在线出版时间:2023-10-09 09:51。

基金项目:国家自然科学基金项目,编号:52208240;天津市交通运输科技发展项目计划,编号:2022-01。

第一作者简介:马士宾(1973—),男,教授,博士,教授,硕士生导师,研究方向为路基路面材料以及桥梁施工。E-mail: marotolo@hebut.edu.cn。


摘要:旧水泥路面快速维修是公路养护人员面临的技术难题,而超薄加铺是一种低成本、 高效率的维修方案。为了得到超薄水泥基加铺材料的最优配合比,通过对水泥基胶凝材料体系的强度发展规律和早期水化机制进行分析,确定基准配合比。以水胶质量比、 辅助胶凝材料替代率和胶砂质量比为自变量,采用三因素11组试验的A最优混合设计法(311-A最优混合设计法)对配合比进行优化设计,分析自变量对设计指标抗折强度、 抗压强度以及流动度的影响。通过模拟计算得到3种配合比组合,对3种组合从经济性、技术性和工作性进行综合分析。结果表明:基于311-A最优混合设计法得到的材料最优配合比的水胶质量比为0.32,辅助胶凝材料替代率为15%,胶砂质量比为1.0,力学强度和流动度的预测值与基于室内试验的实测值误差在5%以内。

关键词:水泥基材料; 超薄加铺; 配合比; 最优混合设计; 水化机制

Abstract:Rapid repair of old cement pavement was a technical problem faced by highway maintenance personnel, and ultra-thin paving was a low-cost and high-efficiency maintenance solution. In order to obtain the optimal mix proportion for ultra-thin cement-based paving materials, based on the analysis of the strength development law and early hydration mechanism of cement-based cementitious material system, the reference mix proportion was determined. Then, the water-binder proportion, auxiliary cementitious material replacement rate and cement-sand proportion were taken as independent variables, and A-optimal mixed design method of three factors and eleven groups of experiments(311-A optimal mixed design method) was used to optimize the mix design. The influence of independent variables on flexural strength, compressive strength and fluidity of design indexes were systematically analyzed. Three mix proportion combinations were obtained through simulation calculation, and a comprehensive analysis was conducted on the economic, technical, and workability aspects. The results show that the optimal mix proportion of material mass percentage obtained by 311-A optimal mixed design method is water-binder proportion of 0.32, auxiliary cementitious material replacement rate of 15% and cement-sand proportion of 1.0. The error of mechanical strength and fluidity between the predicted value and the measured value based on the indoor verification test is within 5%.

Keywords:cement-based material; ultra-thin paving; mix proportion optimization; optimal mixed design; hydration mechanism


参考文献(References):

[1]ROY M, RAY I, DAVALOS J F. High-performance fiber-reinforced concrete: development and evaluation as a repairing material[J]. Journal of Materials in Civil Engineering, 2014, 26(10): 04014074.

[2]GEORGIOU A V, PANTAZOPOULOU S J. Behavior of strain hardening cementitious composites in flexure/shear[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 04017192.

[3]陆宸宇, 姚淇耀, 彭林欣, 等. 新型早强高延性水泥基复合材料的超短龄期力学性能研究[J]. 混凝土, 2022(10): 95-100.

LU C Y, YAO Q Y, PENG L X, et al. Mechanical properties of a novel type of early-strength and high-ductility cementitious composites in ultra-short age[J]. Concrete, 2022(10): 95-100.

[4]TIAN S N, STEPHEN J F. Development of a mix design methodology for high-performance geopolymer mortars[J]. Structural Concrete, 2013, 14(2): 148-156.

[5]王巍, 黄会明, 魏如喜, 等. 半柔性路面用灌注式水泥胶浆的配比优化设计原则[J]. 公路交通科技, 2017, 34(5): 35-41.

WANG W, HUANG H M, WEI R X, et al. Optimization design principle of poured cement slurry ratio for semi-flexible pavement[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5): 35-41.

[6]姚仲泳. 低干燥收缩性能的工程水泥基复合材料配合比研究[J]. 工业建筑, 2022, 52(3): 171-176.

YAO Z Y. Research on mix proportion of ECC with low drying shrinkage[J]. Industrial Construction, 2022, 52(3): 171-176.

[7]MERMERDAS K, ALGN Z, EKMEN S. Experimental assessment and optimization of mix parameters of fly ash-based lightweight geopolymer mortar with respect to shrinkage and strength[J]. Journal of Building Engineering, 2020, 31(C): 101351.

[8]张兰芳, 翟建锦. 基于响应面法的碱激发水泥砂浆配合比优化[J]. 硅酸盐通报, 2019, 38(11): 3619-3624.

ZHANG L F, ZHAl J J. Mixture ratio optimization of alkali-activated cement mortar based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3619-3624.

[9]马士宾, 李盈霞, 闫伟阳. 基于两种方法优化磷酸镁水泥砂浆配合比研究[J]. 混凝土, 2023(1): 140-145.

MA S B, LI Y X, YAN W Y. Optimization of magnesium phosphate cement mortar mixture ratio based on two methods[J]. Concrete, 2023(1): 140-145.

[10]邢志娜, 王菊香, 刘洁, 等. 正交试验设计在近红外光谱建模参数优化选择中的应用[J]. 理化检验(化学分册), 2018, 54(4): 419-422.

XING Z N, WANG J X, LIU J, et al. Application of orthogonal experimental design to optimized selection of modeling factors in nir spectral analysis[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2018, 54(4): 419-422.

[11]张峻铭, 杨伟东, 李岩. 人工智能在复合材料研究中的应用[J]. 力学进展, 2021, 51(4): 865-900.

ZHANG J M, YANG W D, LI Y. Application of artificial intelligence in composite materials[J]. 2021, 51(4): 865-900.

[12]周昊. 大数据驱动的混凝土配合比智能优化研究[D]. 郑州: 华北水利水电大学, 2021.

ZHOU H. Research on intelligent optimization of concrete mixture driven by big data[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.

[13]马士宾, 庞京杰, 任俊财, 等. 基于最优混合设计法的路用混凝土配合比优化[J]. 中国科技论文, 2022, 17(4): 394-399.

MA S B, PANG J J, REN J C, et al. Proportion optimization of road concrete based on optimal mixed design method[J]. China Science Paper, 2022, 17(4): 394-399.

[14]张海波, 狄红丰, 刘庆波, 等. 微纳米无机注浆材料研发与应用[J]. 煤炭学报, 2020, 45(3): 949-955.

ZHANG H B, DI H F, LIU Q B, et al. Research and application of micro-nano inorganic grouting materials[J]. Journal of China Coal Society, 2020, 45(3): 949-955.

[15]黄士元, 邬长森, 杨荣俊. 混凝土外加剂对硫铝酸盐水泥水化历程的影响[J]. 混凝土与水泥制品, 2011, 177(1): 7-12.

HUANG S Y, WU C S, YANG R J. Effects of concrete additives on the hydration process of sulphoaluminate cement[J]. China Concrete and Cement Products, 2011,177(1): 7-12.

[16]方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1): 14-21.

FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete[J]. Engineering Mechanics, 2013, 30(1): 14-21.

[17]何小兵, 沈武福, 贾秋炳, 等. 砂浆流变特性及其膜厚对自密实混凝土性能的影响[J]. 东南大学学报(自然科学版), 2020, 50(3): 463-470.

HE X B, SHEN W F, JIA Q B, et al. Effects of mortar rheological characteristics and film thickness on self-compacting concrete[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(3): 463-470.

[18]南雪丽, 李荣洋, 姬建瑞, 等. 中流动性混凝土工作性与砂浆流变特性相关性研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 81-86.

NAN X L, LI R Y, JI J R, et al. Correlation between medium fluidity concrete workability and mortar rheological properties[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(4): 81-86.