ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

海泡石颗粒重力分级的数值模拟

Numerical simulation of gravity classification of sepiolite particles

周友行, 吴 冲, 杨文佳, 邹 鑫, 闫宋祥, 钟 垂

(湘潭大学机械工程与力学学院, 湖南湘潭411105)


引用格式:周友行, 吴冲, 杨文佳, 等. 海泡石颗粒重力分级的数值模拟[J]. 中国粉体技术, 2023, 29(6): 16-26.

ZHOU Y H, WU C, YANG W J, et al. Numerical simulation of gravity classification of sepiolite particles[J]. China Powder Science and Technology, 2023, 29(6): 16-26.

DOI:10.13732/j.issn.1008-5548.2023.06.002

收稿日期:2023-06-21,修回日期:2023-08-17,在线出版时间:2023-10-09 10:05。

基金项目:国家自然科学基金项目,编号:52175254;湖南省研究生科研创新项目,编号:CX20220603。

第一作者简介:周友行(1971—),男,教授,博士,博士生导师,研究方向为数字化设计与制造。E-mail: zhouyouhang@xtu.edu.cn。


摘要:为了筛选出多种粒径的海泡石颗粒产品,设计一种重力式分级器。针对气体和海泡石颗粒组成的气-固两相流体建立欧拉-拉格朗日两相模型,求解海泡石颗粒分级过程的运动特性;通过分析海泡石颗粒的运动轨迹、位置等运动特性和各级出口处的颗粒粒径分布,确定各级出口的区间分布。结果表明:海泡石颗粒的粒径越小,受分级气流的影响越大;通过分析不同粒径海泡石颗粒在不同时刻的位置,划分出颗粒的分级区间;根据各级出口的颗粒粒径分布分析,确定粒径为1~10 μm的海泡石颗粒表现出更集中的粒径分布,更好的单分散性。

关键词:重力分级; 海泡石颗粒; 多粒径; 气-固两相流; 数值模拟

Abstract:To screen a wide range of particle sizes of seafoam particle products, a gravity classifier was designed. The gas and seafoam particles form a gas-solid two-phase fluid to establish an Eulerian-Lagrangian two-phase model to solve the kinematic characteristics of the classification process of seafoam particles. By analyzing the motion characteristics of seafoam particles such as trajectory and position and the particle size distribution at the exit of each level, the interval distribution of the exit of each level was determined. The results show that the smaller the particle size of the seafoam particles is the more they are affected by the graded airflow. The grading interval of particles is divided by analyzing the positions of seafoam particles with different particle sizes at different moments. According to the particle size distribution at the exit of each level, seafoam particles from 1 μm to 10 μm show more concentrated particle size distribution and better monodispersity.

Keywords:gravity classification; seafoam particles; multi-grain size; gas-solid two-phase flow; numerical simulation


参考文献(References):

[1]郑锡瀚, 马忻狄, 蓝丽红. 糖类物质改性海泡石复合材料制备方法及应用研究进展[J]. 化工矿物与加工, 2021, 50(1): 43-50.

ZHENG X H, MA X D, LAN L H. Research progress on the preparation and application of seafoam composites modified with sugars[J]. Chemical Minerals and Processing, 2021, 50(1): 43-50.

[2]RIENER K, ALBRECHT N, ZIEGELMEIER S, et al. Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF)[J]. Additive Manufacturing, 2020, 34: 101286.

[3]FATAHIAN H, FATAHIAN E, ESHAGH N M, et al. Novel designs for square cyclone using rounded corner and double-inverted cones shapes[J]. Powder Technology, 2021, 380: 67-79.

[4]孙占朋, 孙国刚, 独岩. 进料位置与风速对旋风分级器颗粒分级效果的影响[J]. 化工学报, 2018, 69(4): 1324-1331.

SUN Z P, SUN G G, DU Y. Effect of feed position and wind speed on particle classification effect of cyclone classifier[J]. Journal of Chemical Engineering, 2018, 69(4): 1324-1331.

[5]孙占朋, 孙国刚, 晁继阳, 等. 新型旋风分级器流场特性及颗粒分级性能[J]. 化工进展, 2019, 38(11): 4873-4879.

SUN Z P, SUN G G, CHAO J Y, et al. Flow field characteristics and particle classification performance of a new cyclone classifier[J]. Chemical Progress, 2019, 38(11): 4873-4879.

[6]SAFIKHANI H, ZAMANI J, MUSA M. Numerical study of flow field in new design cyclone separators with one, two and three tangential inlets[J]. Advanced Powder Technology ,2018, 29(3): 611-622.

[7]SHASTRI R, BRAR L S. Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation[J]. Separation and Purification Technology, 2020, 249: 117-149.

[8]WANG S Y, LI H L, WANG R, et al. Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM[J]. Advanced Powder Technology, 2019, 30(2): 227-239.

[9]WADENPOHL DR.ING.C. Production of powder coatings with defined particle size distribution by grinding and inline classification[J]. International Journal of Mineral Processing, 2004, 74: S155-S164.

[10]WANG Q P, MELAAEN M C, SILVA S R D. Investigation and simulation of a cross-flow air classifier[J]. Powder Technology, 2001, 120(3): 273-280.

[11]LAI W, LU W, CHOU M. Sorting of fine powder by gravitational classification chambers[J]. Advanced Powder Technology, 2009,20(2): 177-184.

[12]BANJAC V, PEZO L, PEZO M, et al. Optimization of the classification process in the Zigzag air classifier for obtaining a high protein sunflower meal-chemometric and CFD approach[J]. Advanced Powder Technology, 2017, 28(3): 1069-1078.

[13]周友行, 李昱泽, 徐长锋, 等. 海泡石颗粒气固两相射流分级的数值模拟[J]. 中国粉体技术, 2020, 26(4): 15-20.

ZHOU Y H, LI Y Z, XU C F, et al. Numerical simulation of gas-solid two-phase jet classification of seafoam particles[J]. China Powder Science and Technology, 2020, 26(4): 15-20.

[14]JOHANSSON R, EVERTSSON M. CFD simulation of a gravitational air classifier[J]. Minerals Engineering, 2012, 33(3): 20-26.

[15]袁竹林, 朱立平, 耿凡, 等. 气固两相流动与数值模拟[M]. 南京: 东南大学出版社, 2013.

YUAN Z L, ZHU L P, GENG F, et al. Gas solid two phase flow and numerical simulation[M]. Nanjing: Southeast University Press,2013.

[16]ZHOU Y, SHEN W. Numerical simulation of particle classification in new multi-product classifier[J]. Chemical Engineering Research and Design, 2022, 177: 484-492.

[17]伍赫, 郝子晗, 杨星, 等. 颗粒物沉积与平板气膜冷却耦合效应的数值研究[J]. 航空动力学报, 2023, 12(1): 5-24.

WU H, HAO Z H, YANG X, et al. Numerical study of the coupling effect of particle deposition and flat plate air film cooling[J]. Journal of Aerodynamics, 2023, 12(1): 5-24.