张铭辉a, 魏敬武a, 许蕾蕾a, 官建国a,b
(武汉理工大学a. 材料复合新技术国家重点实验室, b. 材料科学与工程国际化示范学院, 湖北武汉430070)
引用格式:张铭辉, 魏敬武, 许蕾蕾, 等. 铂基双面神微纳米马达运动的增强策略[J]. 中国粉体技术, 2023, 29(5): 135-144.
ZHANG M H, WEI J W, XU L L, et al. Motion enhancement for platinum-based Janus micro-nanomotors[J]. China Powder Science and Technology, 2023, 29(5): 135-144.
收稿日期:2023-04-23,修回日期:2023-06-29,在线出版时间:2023-08-25 12:05。
DOI:10.13732/j.issn.1008-5548.2023.05.015
基金项目:国家自然科学基金项目,编号: 21975195。
第一作者简介:张铭辉(1997—),男,硕士研究生,研究方向为微纳米马达。E-mail: zhangmh@whut.edu.cn。
通信作者简介:许蕾蕾(1981—),女,研究员,博士,博士生导师,研究方向为微纳米马达。E-mail: xull@whut.edu.cn。
摘要:铂基微纳米马达制备简单, 组成稳定, 多作为典型体系开展化学驱动微纳米马达的相关研究。 化学驱动微纳米马达的运动易受提供驱动力的化学反应的制约, 很难在不改变燃料浓度的情况下实现运动速度的提升。 将铂基双面神微纳米马达作为研究对象, 探索化学驱动微纳米马达的运动增强策略; 通过引入过渡金属氧化物层构建异质结, 在聚苯乙烯微球(PS)@过渡金属氧化物(CuO或WO3)核壳粒子表面半包覆铂, 构建PS@过渡金属氧化物-铂基双面神微纳米马达。 结果表明: 通过构建异质结,H2O2的催化转化速率得到提升, 铂基双面神微纳米马达的运动速度从22 μm/s提升至35 μm/s, 实现铂基双面神微纳米马达的运动增强, 运动速度的提升取决于铂与过渡金属氧化物之间的电子迁移速率。
关键词:微纳米马达; 化学驱动; 异质结; 运动增强
Abstract:Platinum-based micro-nanomotors have been widely used as a typical system for conducting research on chemically-driven micro-nanomotors due to their simple preparation and stable composition. For chemically-driven micro-nanomotors, their motion is easily constrained by the chemical reaction providing the driving force, and it is difficult to achieve an increase in motion speed without changing the fuel concentration. In this study, platinum-based Janus micro-nanomotors were used as the research object to explore strategies for enhancing the motion of chemically-driven micro-nanomotors. By introducing a transition metal oxide layer to create a heterojunction, Pt was partially encapsulated on the surface of PS@transition metal oxide (CuO or WO3) core-shell particles to construct PS@transition metal oxide-Pt Janus micro-nanomotors. The results show that the catalytic conversion rate of H2O2 is improved by constructing the heterojunction, and the motion speed of the platinum-based Janus micro-nanomotor is increased from 22 μm/s to 35 μm/s, achieving motion enhancement. The increase in motion speed depends on the electron transfer rate between Pt and transition metal oxide.
Keywords:micro-nanomotor; chemical-driven; heterojunction; motion enhancement
参考文献(References):
[1]DREYFUS R, BAUDRY J, ROPER M L, et al. Microscopic artificial swimmers[J]. Nature, 2005, 437(7060): 862-865.
[2]XU D, WANG Y, LIANG C, et al. Self-propelled micro/nanomotors for on-demand biomedical cargo transportation[J]. Small, 2020, 16(27): 1902464.
[3]XU C, WANG S, WANG H, et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy[J]. Nano Letters, 2021, 21(5): 1982-1991.
[4]YANEZ-SEDENO P, CAMPUZANO S, PINGARRON J M. Janus particles for (bio)sensing[J]. Applied Materials Today, 2017, 9: 276-288.
[5]PACHECO M, JURADO-SANCHEZ B, ESCARPA A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors[J]. Analytical Chemistry, 2018, 90(4): 2912-2917.
[6]GAO W, WANG J. The environmental impact of micro/nanomachines: a review[J]. ACS Nano, 2014, 8(4): 3170-3180.
[7]GUIX M, OROZCO J, GARCIA M, et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil[J]. ACS Nano, 2012, 6(5): 4445-4451.
[8]PAXTON W F. KISTLER K C. OLMEDA C C, et al. Catalytic nanomotors: autonomous movement of striped nanorods[J]. Journal of the American Chemical Society, 2004, 126(41): 13424-13431.
[9]GAO W, PEI A, WANG J. Water-driven micromotors[J]. ACS Nano, 2012, 6(9): 8432-8438.
[10]SOLOVEV A A, MEI Y,BERMUDEZ URENA E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J]. Small, 2009, 5(14): 1688-1692.
[11]GAO W, SATTAYASAMITSATHIT S, OROZCO J, et al. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes[J]. Journal of the American Chemical Society, 2011, 133(31): 11862-11864.
[12]ZHANG J, ZHENG X, CUI H, et al. The self-propulsion of the spherical Pt-SiO2 Janus micro-motor[J]. Micromachines, 2017, 8(4): 123.
[13]ZHANG Y, YUAN J, ZHAO L, et al. Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation[J]. Ceramics International, 2022, 48(3): 4031-4046.
[14]CHEN M X, WAN S P, ZHONG L X, et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate[J]. Angewandte Chemie, 2021, 60(50): 26233-26237.
[15]LYU X L, CHEN J Y, LIU J Y, et al. Reversing a platinum micromotor by introducing platinum oxide[J/OL]. Angewandte Chemie, 2022,61(24)[2023-05-01]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202201018.
[16]SAYED M, YU J, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chemical Reviews, 2022, 122(11): 10484-10537.
[17]HONG J W, WI D H, LEE S U, et al. Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis[J]. Journal of the American Chemical Society, 2016, 138(48): 15766-15773.
[18]FU Y, LI J, LI J. Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties[J]. Nanomaterials, 2019, 9(3): 359.
[19]LIU Y, GUO J, ZHU E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J]. Nature, 2018, 557: 696-700.
[20]BROOKS A M, TASINKEVYCH M, SABRINA S, et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis[J]. Nature Communications, 2019, 10(1): 495.
[21]ZHANG J, LIN Y, LIU L. Electron transfer in heterojunction catalysts[J]. Physical Chemistry Chemical Physics, 2023, 25(10): 7106-7119.
[22]ZHOU J, DOU Y, HE T, et al. Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting[J]. Nano Research, 2021, 14: 4548-4555.