ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

多因素及干湿循环对泡沫混凝土性能的影响

Effects of multiple factors and wetting and drying cycles on properties of brick powder foamed concrete

谢洪阳, 戴宜文, 任宇航, 邓 勇

(南昌航空大学土木建筑学院, 江西南昌330063)


引用格式:谢洪阳, 戴宜文, 任宇航, 等. 多因素及干湿循环对泡沫混凝土性能的影响[J]. 中国粉体技术, 2023, 29(5): 125-134.

XIE H Y, DAI Y W, REN Y H, et al. Effects of multiple factors and wetting and drying cycles on properties of brick powder foamed concrete[J]. China Powder Science and Technology, 2023, 29(5): 125-134.

DOI:10.13732/j.issn.1008-5548.2023.05.014

收稿日期:2022-01-11,修回日期:2023-07-06,在线出版时间:2023-08-28 13:57。

基金项目:国家自然科学基金项目,编号:52068054;南昌航空大学研究生创新专项资金项目,编号YC2022-130。

第一作者简介:谢洪阳(1973—),男,教授,博士,硕士生导师,研究方向为结构工程。E-mail: xiehongyang486@163.com。

通信作者简介:戴宜文(1999—),硕士研究生,研究方向为结构工程。E-mail: dyw2458751868@163.com。


摘要:为了探索泡沫掺量(质量分数,下同)、 砖粉掺量、 水料比(质量比, 下同)和羟丙基甲基纤维素(HPMC)掺量、 干湿循环对掺砖粉的泡沫混凝土性能的影响, 开展四因素五水平的正交实验, 并结合功效系数法确定掺砖粉泡沫混凝土的最优配合比。 结果表明: 泡沫混凝土的最优配合比为泡沫、 砖粉、 HPMC掺量分别为3%、 30%、 0.05%、 水料比为0.55。 泡沫混凝土的抗压强度随泡沫和砖粉掺量的增加呈下降趋势、随水料比和HPMC掺量的增加呈现先上升后下降的趋势;随着干湿循环次数的增加,掺砖粉泡沫混凝土的抗压强度不断减小,原因是泡沫混凝土内部的完整气孔在吸水和脱水之后,周围会产生类似于应力集中的现象,产生微小裂缝,导致原先密闭的孔洞变为有害孔洞,甚至会产生贯穿裂缝,极大地影响掺砖粉泡沫混凝土的耐久性。

关键词:泡沫混凝土; 砖粉; 正交试验; 水料比; 羟丙基甲基纤维素; 干湿循环; 功效系数法

Abstract:In order to explore the effects of foam content (mass fraction, the same below), brick powder content, water-to-material ratio (mass ratio, the same below), hydroxypropyl methylcellulose (HPMC) content, and dry-wet cycle on the properties of brick-doped foam concrete, orthogonal experiments of four factors and five levels were carried out, and the optimal mixing ratio of brick-doped powder foam concrete was determined by combining the power coefficient method. The results show that the optimal mixing ratio of brick-doped powder foam concrete is that foam, brick powder and HPMC content are 3%, 30%, 0.05%, and the water-to-material ratio is 0.55. The compressive strength of foam concrete showes a downward trend with the increase of foam and brick powder content, and a trend of first increasing and then decreasing with the increase of water-to-material ratio and HPMC content. With the increase of the number of dry and wet cycles, the compressive strength of brick-doped powder foam concrete continues to decrease, because the complete pores inside the foam concrete will produce a phenomenon similar to stress concentration around after water absorption and dehydration, resulting in tiny cracks, resulting in the original closed holes becoming harmful holes, and even through cracks, which greatly affects the durability of brick-doped powder foam concrete.

Keywords:foam concrete; brick powder; orthogonal test; water-material ratio; hydroxypropyl methylcellulose; wet and dry cycle; power coefficient method


参考文献(References):

[1]李秋义, 全洪珠, 秦原. 混凝土再生骨料[M]. 北京: 中国建筑工业出版社, 2011:171.

LI Q Y, QUAN H Z, QIN Y. Concrete recycled aggregate[M]. Beijing: China Architecture and Building Press, 2011: 171.

[2]张肖明, 黄沛增, 崔庆怡. 建筑垃圾再生微粉泡沫混凝土性能研究[J]. 混凝土与水泥制品, 2020(5): 96-98.

ZHANG X M, HUANG P Z, CUI Q Y. Research on the performance of micro-powder foam concrete recycled from construction waste [J]. Concrete and Cement Products, 2020(5):96-98.

[3]郭峻驿, 闫亚杰. 大掺量粉煤灰微珠泡沫混凝土试验研究[J]. 新型建筑材料, 2019, 46(1): 79-81.

GUO J Y, YAN Y J. Experimental study on microbeads foamed concrete with large amount of fly ash[J]. New Building Materials, 2019, 46(1): 79-81.

[4]林在健. 复掺粉煤灰矿渣对岩溶空洞泡沫混凝土性能影响研究[J]. 广东建材, 2021, 37(12): 4-6.

LIN Z J. Study on the influence of fly ash slag on the performance of karst cavity foamed concrete[J]. Guangdong Building Materials, 2021, 37(12): 4-6.

[5]金明山, 宋杨, 彭飞, 等. 粉煤灰泡沫混凝土抗冻性能研究[J]. 水利科技与经济, 2022, 28(7): 94-98.

JIN M S, SONG Y, PENG F, et al. Research on frost resistance of fly ash foamed concrete [J]. Water Science, Technology and Economy, 2022,28(7):94-98.

[6]林国忠. 粉煤灰及化学激发剂制备泡沫混凝土的试验研究[J]. 福建建筑, 2022(2): 67-70.

LIN G Z. Experimental study on preparation of foamed concrete with fly ash and chemical activator [J]. Fujian Construction,2022(2):67-70.

[7]张松, 李如燕, 董祥, 等. 再生微粉有效代替水泥制备泡沫混凝土[J]. 硅酸盐通报, 2018,37(9): 2948-2953.

ZHANG S, LI R Y, DONG X, et al. Preparation of foamed concrete with recycled micro powder instead of cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2948-2953.

[8]PASUPATHY K, RAMAKRISHNAN S, SANJAYAN J. Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete[J]. Construction and Building Materials, 2021, 271: 121850.

[9]薛翠真, 朱翔琛, 乔宏霞. 建筑垃圾砖粉颗粒特征与砂浆强度灰熵分析[J]. 材料科学与工程学报, 2022, 40(6): 992-997.

XUE C Z, ZHU X C, QIAO H X. Particle characteristics of brick powder and ash entropy analysis of mortar strength[J]. Chinese Journal of Materials Science and Engineering, 2022, 40(6): 992-997.

[10]CHANDNI T J, ANAND K B. Utilization of recycled waste as filler in foam concrete[J]. Journal of Building Engineering, 2018, 19: 154-160.

[11]SOON C N, KAW S L. Thermal conductivity of newspaper sandwiched aerated lightweight concretepanel[J]. Energy and Buildings, 2010, 42(12): 2452-2456.

[12]BENAZZOUK A, DOUZANE O, MEZREB K, et al. Thermal conductivity of cementconposites containing rubber waste particles: experimental study and modelling[J]. Construction and Building Materials, 2008, 22(4): 573-579.

[13]ZAHER M Y, RAVINESH C D, AMEER H. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model[J]. Advances in Engineering Software, 2018, 115: 112-125.

[14]邵家虎, 高建明, 赵亚松. 再生黏土砖粉水泥胶凝体系的特性[J]. 东南大学学报(自然科学版), 2019, 49(2): 375-379.

SHAO J H, GAO J M, ZHAO Y S. Characteristics of cement cementitious system of recycled clay brick powder[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(2): 375-379.

[15]吴小流. 轻质泡沫混凝土在高陡填方路基中的应用研究[J]. 西部交通科技, 2022(10): 91-92, 153.

WU X L. Research on the application of lightweight foam concrete in high and steep fill subgrade[J]. Western Transportation Science and Technology, 2022(10): 91-92, 153.

[16]李应权, 朱立德, 李菊丽, 等. 泡沫混凝土配合比的设计[J]. 徐州工程学院学报(自然科学版), 2011, 26(2): 1-5.

LI Y Q, ZHU L D, LI J L, et al. Design of mix ratio of foam concrete[J]. Journal of Xuzhou Institute of Technology (Natural Science Edition), 2011, 26(2): 1-5.

[17]蒋冬青. 泡沫混凝土应用新进展[J]. 中国水泥, 2003(3): 46-48.

JIANG D Q. New progress in the application of foam concrete[J]. China Cement, 2003(3): 46-48.

[18]李龙珠, 唐惠东, 孙媛媛. 利用正交试验法研究泡沫混凝土制备工艺对其强度的影响[J]. 混凝土, 2010(8): 23-24.

LI L Z, TANG H D,SUN Y Y. Study on the influence of foam concrete preparation process on strength by orthogonal experimental method[J]. Concrete, 2010(8): 23-24.

[19]马永炯, 杨安, 洪芬, 等. 基于正交试验的泡沫混凝土配合比设计[J]. 混凝土, 2021(7): 147-150.

MA Y J, YANG A, HONG F, et al. Mix design of foamed concrete based on orthogonal test[J]. Concrete, 2021(7): 147-150.

[20]高允彦. 正交及回归试验设计方法[M]. 北京: 冶金工业出版社, 1988.

G Y Y. Orthogonal and regression test design method[M]. Beijing: Metallurgical Industry Press, 1988.

[21]胡艳丽, 郝晋高, 赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报, 2019, 43(3): 363-366.

HU Y L, HAO J G, ZHAO X M, et al. Study on the relationship between performance and pore structure of foamed lightweight concrete[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3): 363-366.

[22]李方贤, 余其俊, 罗云峰, 等. 泡沫混凝土气孔结构数学表征及其分析[J]. 西南交通大学学报, 2018, 53(6): 1205-1210.

LI F X, YU Q J, LUO Y F, et al. Mathematical characterization and analysis of pore structure of foamed concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1205-1210.

[23]吴博, 赵法锁, 吴韶艳. 基于组合赋权-功效系数法的黄土边坡稳定性评价[J]. 灾害学, 2020, 35(2): 34-38.

WU B, ZHAO F S, WU S Y. Stability evaluation of loess slope based on combined weighting and efficiency coefficient method[J]. Journal of Catastrophology, 2020, 35(2): 34-38.