陈文昭1, 唐之博1, 王东星2, 刘夕奇2
(1. 南华大学土木工程学院, 湖南衡阳42100; 2. 武汉大学土木建筑工程学院, 湖北武汉430000)
引用格式:陈文昭, 唐之博, 王东星, 等. 海水侵蚀对水泥土强度的影响与数值模拟[J]. 中国粉体技术, 2023, 29(5): 112-124.
CHEN W Z, TANG Z B, WANG D X, et al. Effect of seawater erosion on the strength of cement soil and numerical simulation study[J]. China Powder Science and Technology, 2023, 29(5): 112-124.
DOI:10.13732/j.issn.1008-5548.2023.05.013
收稿日期:2022-11-25,修回日期:2023-07-19,在线出版时间:2023-08-28 12:03。
基金项目:中央高校科研项目,编号:2017-YB-022; 浙江省山体地质灾害重点实验室开放基金项目,编号:PCMGH-2021-03。
第一作者简介:陈文昭(1969—),男,副教授,博士,硕士生导师,研究方向为岩土工程稳定性、 深基坑与边坡支挡结构、 岩土工程多场耦合数值模拟、 尾矿坝安全评价等。E-mail: chengwz@usc.edu.cn。
通信作者简介:唐之博(1998—),男,硕士研究生,研究方向为地基处理。E-mail: 1845098682@qq.com。
摘要:为了研究滨海相淤泥土中侵蚀性离子对水泥土搅拌桩复合地基的强度与寿命的不利影响, 采用无侧限抗压强度试验、 扫描电子显微镜表征和数值模拟方法, 探讨侵蚀环境对水泥土工程力学性能的影响及海水侵蚀环境下多桩复合地基的工程性状。 结果表明: 含氯化钠水泥土的强度随氯化钠与土的质量比的增大先增大后减小, 含氯化镁水泥土的强度随氯化镁与土的质量比的增大而不断减小, 含硫酸镁水泥土的强度随硫酸镁与土的质量比的增加先增大后减小。 由数值模拟结果可见, 当盐与土的质量比为0.6 g/kg时, 水泥土搅拌桩单桩强度衰减约10%, 复合地基整体沉降最大值增加约20%。
关键词:水泥土; 海水侵蚀; 微观结构; 多桩复合地基; 数值模拟
Abstract:In order to investigate the adverse effects of erosive ions in coastal phase silt soil on the strength and life span of cement soil mixing pile composite foundation, unconfined compressive strength test, scanning electron microscope characterization and numerical simulation methods were used to explore the effects of erosive environments on the engineering mechanical properties of cemented soil and the engineering properties of multi-pile composite foundations under the seawater erosive environments. The results show that the strength of sodium chloride-containing hydraulic soil first increases and then decreases with the increase of the mass ratio of sodium chloride to soil, the strength of magnesium chloride-containing hydraulic soil decreases with the increase of the mass ratio of magnesium chloride to soil, and the strength of magnesium sulfate-containing hydraulic soil first increases and then decreases with the increase of the mass ratio of magnesium sulfate to soil. From the numerical simulation results, it can be seen that when the mass ratio of salt to soil is 0.6 g/kg, the strength of single pile of hydraulic soil mixing pile attenuates about 10%, and the overall settlement maximum of composite foundation increases about 20%.
Keywords:cemented soil; seawater erosion;microsized structure;multi-pile composite foundation;numerical simulation
参考文献(References):
[1]王子帅, 王东星. 工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J]. 岩土工程学报, 2022, 44(11): 2035-2042.
WANG Z S, WANG D X. Performance of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042.
[2]陈峰, 童生豪, 赖文涛. 海水环境下镍铁渣粉水泥土的抗渗性能[J]. 建筑材料学报, 2022, 25(11): 1190-1194.
CHEN F, TONG S H, LAI W T. Impermeability of cement soil mixed with ferronickel slag powder in seawater[J]. Environment.Journal of Building Materials, 2022, 25(11): 1190-1194.
[3]宁宝宽. 环境侵蚀下水泥土的损伤破裂试验及其本构模型[D]. 沈阳: 东北大学, 2006.
NING B K. Experiments and its constitutive model of cement-mixed soil under environmental erosion[D]. Shenyang: Northeastern University, 2006.
[4]韩鹏举, 白晓红, 赵永强,等. Mg2+和SO₄²⁻相互影响对水泥土强度影响的试验研究[J]. 岩土工程学报, 2009, 31(1): 72-76.
HAN P J, BAI X H, ZHAO Y Q, et al. Experimental study on strength of cement soil under Mg2+ and SO₄²⁻ interaction influence[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 72-76.
[5]邢皓枫, 徐超, 叶观宝, 等. 水泥加固高含盐软土的强度和微观结构研究[J]. 同济大学学报(自然科学版), 2008, 36(12): 1606-1610.
XING H F, XU C, YE G B, et al. Strength and microstructure of salt-rich soft soil improved by cement[J]. Journal of Tongji University(Natural Science), 2008, 36(12): 1606-1610.
[6]董猛荣, 杨俊杰, 王曼, 等. 海相软土场地水泥土劣化机理室内试验研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(1): 93-103.
DONG M R, YANG J J, WANG M, et al. Laboratory study on deterioration mechanism of cement soil in marine clay sites[J]. Periodical of Ocean University of China, 2020, 50(1): 93-103.
[7]杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138.
YANG J J, SUN T, ZHANG Y C, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138.
[8]韩鹏举, 张文博, 刘新, 等. 氯化镁对水泥土早期强度的影响研究[J]. 岩土工程学报, 2014, 36(6): 1173-1178.
HAN P J, ZHANG W B, LIU X, et al. Early strength of cemented soils polluted by magnesium chloride[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1173-1178.
[9]宁宝宽, 金生吉, 陈四利. 侵蚀性离子对水泥土力学特性的影响[J]. 沈阳工业大学学报, 2006(2): 178-181.
NING B K, JIN S J, CHEN S L, et al. Influence of erosive ions on mechanical properties of cemented soil[J]. Journal of Shenyang University of Technology, 2006(2): 178-181.
[10]刘鑫, 洪宝宁, 陈艳丽, 等. 侵蚀环境下水泥土强度及微结构变化规律研究[J]. 武汉理工大学学报, 2010, 32(10): 11-15, 57.
LIU X, HONG B N, CHEN Y L, et al. Research on the shear strength and microstructure change regulation of cement-mixed soil under environmental erosion[J]. Journal of Wuhan University of Technology, 2010, 32(10): 11-15, 57.
[11]XIONG F, XING H F, LI H M. Experimental study on the effects of multiple corrosive ion coexistence on soil-cement characteristics[J]. Soils and Foundations, 2019, 59(2): 398-406.
[12]白晓红, 赵永强, 韩鹏举, 等. 污染环境对水泥土力学特性影响的试验研究[J]. 岩土工程学报, 2007(8): 1260-1263.
BAI X H, ZHAO Y Q, HAN P J, et al. Experimental study on mechanical property of cemented soil under environmental contaminations[J]. Chinese Journal of Geotechnical Engineering, 2007(8): 1260-1263.
[13]LIU Z P, LIU Q S, QU J W, et al. Study on durability of cement soil under brine erosion[J]. Advanced Materials Research, 2012, 1615(446/447/448/449): 1858-1863.
[14]YAO K, WANG W, LI N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials, 2019, 206: 160-168.
[15]刘泉声, 屈家旺, 柳志平, 等. 侵蚀影响下水泥土的力学性质试验研究[J].岩土力学,2014,35(12):3377-3384.
LIU Q S, QU J W, LIU Z P, et al. Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35(12): 3377-3384.
[16]VAN N P, BRETT T, JINSONG H, et al. Long-term strength of soil-cement columns in coastal areas[J]. Soils and Foundations, 2017, 57(4): 645-654.
[17]黄新. 硫酸盐介质对水泥加固土强度的影响[J]. 工业建筑, 1994(9): 19-23.
HUANG X. Influence of sulfate on the strength of cement-stabilized soils[J]. Industrial Construction, 1994(9): 19-23.
[18]刘东锋. 氯化钠、 氯化镁侵蚀环境对水泥土力学性质影响试验研究[J]. 科学技术与工程, 2014, 14(26): 131-135.
LIU D F. Experimental study of cemented soil under sodium chloride and magnesium chloride erosion environment[J]. Science Technology and Engineering, 2014, 14(26): 131-135.
[19]王运周, 李植淮, 李连友, 等. 水泥改良察尔汗超氯盐渍土强度试验研究[J]. 公路, 2016, 61(4): 14-18.
WANG Y Z, LI Z H, LI L Y, et al. Experimental research on strength of the cement stabilized Qarhan over-chlorine saline soil[J]. Highway, 2016, 61(4): 14-18.
[20]张飞. 侵蚀环境下水泥土的力学机理研究[D]. 合肥: 合肥工业大学, 2021.
ZHANG F. Study on mechanical mechanism of cement-soil in erosive environment[D]. Hefei: Hefei University of Technology, 2021.
[21]吴燕开, 史可健, 胡晓士, 等. 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41(6): 1014-1022.
WU Y K, SHI K J, HU X S, et al. Experimental study on strength degradation of steel slag+cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014-1022.
[22]刘鑫, 洪宝宁, 陈艳丽, 等. 侵蚀环境下水泥土强度及微结构变化规律研究[J]. 武汉理工大学学报, 2010, 32(10): 11-15, 57.
LIU X, HONG B N, CHEN Y L, et al. Research on the shear strength and microstructure change regulation of cement-mixed soil under environmental erosion[J]. Journal of Wuhan University of Technology, 2010, 32(10): 11-15, 57.
[23]任杰. 镁盐污染对水泥土力学性能的影响研究[D]. 太原: 太原理工大学, 2009.
REN J. Study on mechanical property of cemented soil under magnesium salts contamination[D]. Taiyuan:Taiyuan University of Technology, 2009.