ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第5期
<返回第5期

基于力场调控机制的离子分离数值仿真

Numerical simulation of ion separation based on force field modulation mechanism

胡雅茹1, 张东相2, 李子瑞1

(1. 河北工业大学机械工程学院, 国家技术创新工程研究中心, 天津300401;2. 犹他州立大学生物工程系, 犹他州洛根市84321, 美国)


引用格式:胡雅茹, 张东相, 李子瑞. 基于力场调控机制的离子分离数值仿真[J]. 中国粉体技术, 2023, 29(5): 101-111.

HU Y R, ZHANG D X, LI Z R. Numerical simulation of ion separation based on force field modulation mechanism[J]. China Powder Science and Technology, 2023, 29(5): 101-111.

DOI:10.13732/j.issn.1008-5548.2023.05.012

收稿日期:2023-05-27,修回日期:2023-07-20,在线出版时间:2023-08-29 16:26。

基金项目:国家自然科学基金项目,编号:12072100。

第一作者简介:胡雅茹(1997—),女,硕士研究生,研究方向为微纳流体力学。E-mail: 202031205119@stu.hebut.edu.cn。

通信作者简介:李子瑞(1969—),男,教授,博士,博士生导师,研究方向为微纳流体力学。E-mail: lizirui@gmail.com。


摘要:为了解决高镁锂浓度比例下离子分离困难的问题,提出一种基于力场调控的离子分离数值仿真系统。该系统引入呈特定位置关系的水平障碍,来调节系统的流场分布,依据锂离子和镁离子电泳迁移率的差异,在电场力和流场力的作用下将2种离子以与水平方向不同夹角的路径扩散,实现镁、 锂离子的分离;采用计算流体力学方法对离子分离系统进行数值模拟,通过分析离子在流场调节下的行为,探索该系统对电压、 流速和障碍参数的响应规律;水平障碍将通道分为中间宽、 边界窄的区域,在离子出口处稳定流场,缩小离子采样空间,控制来流方向接近锂离子分离轨迹,使离子分离质量更高, 稳定性更好;采用稀释后的盐湖卤水溶液进行数值仿真模拟。结果表明:在电压为11.5 V、 水流速度为990 μm/s时,该系统可以回收93%的锂离子,并将镁离子回收率提高至95%,基于力场调控机制的离子分离系统可以实现对化学性质相似的锂、镁离子的高效分离。

关键词:离子分离; 电泳法; 数值模拟; 力场调控

Abstract:In order to solve the problem of difficult ion separation under high Mg2+-Li+ concentration ratio, a numerical simulation system for ion separation based on force field modulation was proposed in this paper. The system regulated the flow field distribution of the system by introducing horizontal barriers in a specific positional relationship. Based on the difference in electrophoretic mobility of lithium and magnesium, the separation of magnesium and lithium ion was achieved by diffusing the 2 ions in a path with different angles to the horizontal direction under the action of electric field forces and fluid flow forces. This study used computational fluid dynamics methods for numerical simulation, and explored the response law of the system to voltage, flow rate and barrier parameters by analyzing the behavior of ions under the flow field regulation. The horizontal barrier divided the channel into a region with a wide middle and a narrow boundary. The flow field was stabilized at the ion outlet to narrow the sampling space for ions, and the direction of the inlet flow was controlled to be close to the lithium ion separation trajectory, resulting in higher quality and stability of ion separation. In this study, numerical simulations were carried out using diluted salt lake brine solutions. The results show that the system can recover 93% of lithium ions and increase the recovery of magnesium ions to 95% at a voltage of 11.5 V and a fluid flow velocity of 990 μm/s. The ion separation system based on the force field modulation mechanism can achieve efficient separation of chemically similar lithium and magnesium ions.

Keywords:ion separation; electrophoresis; numerical simulation; force field modulation


参考文献(References):

[1]TIAN L W, YU H, ZHANG W F, et al. The star material of lithium ion batteries,LiFePO4: basic properties, optimized modification and future prospects[J]. Materials Review, 2019, 33(11): 3561-3579.

[2]LI J B, MENG H J, PI Z J, et al. Application status and development trends of the lithium primary batteries[J]. Chinese Journal of Power Sources, 2018, 42(5): 725-727.

[3]王超君, 陈翔, 彭思侃, 等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报, 2021, 41(3): 83-95.WANG C J, CHEN X, PENG S K, et al. Development status of lithium-ion battery and its application in aviation[J]. Journal of Aerospace Materials, 2021, 41(3): 83-95.

[4]SONG M K, PARK S, ALAMGIR F M, et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives[J]. Materials Science &Engineering R-Reports, 2011, 72(11): 203-252.

[5]LI J, ZHU Q S, LI H Z. Development of typical lithium minerals roasting for high lithium extraction[J]. Scientia Sinica Chimica, 2017, 47(11): 1273-1283.

[6]OGAWA Y, KOIBUCHI H, SUTO K, et al. Effects of the chemical compositions of salars de uyuni and atacama brines on lithium concentration during evaporation[J]. Resource Geology, 2014, 64(2): 91-101.

[7]ZHAO Y, WU M Y, SHEN P X, et al. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium[J]. Journal of Membrane Science, 2021, 618: 118668.

[8]辛娟, 李海朝, 张丽娟, 等. 高镁锂比盐湖卤水降镁研究[J]. 盐科学与化工, 2022, 51(2): 18-20.XIN J, LI H C, ZHANG L J, et al. Study on magnesium reduction in brine with high magnesium-lithium ratio[J]. Salt Science and Chemistry, 2022, 51(2): 18-20.

[9]韦笑余. 高镁锂比盐湖卤水提锂新型萃取体系的开发及应用基础研究[D]. 北京:北京化工大学, 2021.WEI X Y. Development and application of a novel extraction system for lithium extraction from brine with high magnesium-lithium ratio[D]. Beijing: Beijing University of Chemical Technology, 2021.

[10]王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921.WANG Q, ZHAO Y J, LIU Y, et al. Research progress on Mg2+-Li+ separation and lithium extraction technology in high Mg2+-Li+ ratio salt lakes[J]. Journal of Chemical Engineering, 2021, 72(6): 2905-2921.

[11]张亮, 杨卉芃, 柳林, 等. 全球提锂技术进展[J]. 矿产保护与利用, 2020, 40(5): 24-31.ZHANG L, YANG H F, LIU L, et al. Global advances in lithium extraction[J]. Mineral Conservation and Utilization, 2020, 40(5): 24-31.

[12]姚智俊. 结晶沉淀法处理化学镀镍废水的研究[J]. 科技传播, 2016, 8(8): 171-172.YAO Z J. Research on the treatment of chemical nickel plating wastewater by crystallization precipitation[J]. Science and Technology Communication, 2016, 8(8): 171-172.

[13]HARVIANTO G R, KIM S H, JU C S. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater[J]. Rare Metals, 2016, 35(12): 948-953.

[14]NAN J M, HAN D M, ZUO X X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284.

[15]SHI D, LI L J, SONG F G, et al. Mechanism study of extracting lithium from brine with N523-TBP mixed extraction system[J]. Journal of Salt Lake Research, 2017, 25(1): 57-63.

[16]SUN Y, WANG Y H, LIU Y, et al. Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology[J]. ACS Sustainable Chemistry &Engineering, 2021, 9(33): 11022-11031.

[17]申明亮. 电解法与皮江法炼镁的效益比较及分析[J]. 有色冶金节能, 2009, 25(5): 6-9.SHEN M L. Comparison and analysis of the benefits of magnesium refining by electrolysis and Pijiang method[J]. Energy Conservation in Non-ferrous Metallurgy, 2009, 25(5): 6-9.

[18]王勇. 离子膜电解法制取氢氧化锂工艺研发与应用[J]. 青海科技, 2020, 27(3): 43-47.

WANG Y. Development and application of lithium hydroxide production process by ionic membrane electrolysis[J]. Qinghai Science and Technology, 2020, 27(3): 43-47.

[19]NIE X Y, SUN S Y, SUN Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135.

[20]SONG J F, ZHANG Y Y, LI X M, et al. Lithium separation by stable membrane extraction technology[J]. Membrane Science and Technology, 2012, 32(2): 107-108.

[21]SWAIN B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review[J]. Journal of Chemical Technology &Biotechnology, 2016, 91(10): 2549-2562.

[22]XU S S, SONG J F, BI Q Y, et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice[J]. Journal of Membrane Science, 2021, 635: 119441.

[23]LI R, LIU F. Extracting lithium from salt lake brine via adsorption method[J]. Modern Chemical Industry, 2017, 37(8): 132-134.

[24]XIAO G P, TONG K F, ZHOU L S, et al. Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve[J]. Industrial &Engineering Chemistry Research, 2012, 51(33): 10921-10929.

[25]LI Y, ZHAO Y J, WANG H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081.

[26]YANG G, SHI H, LIU W Q, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 586-591.

[27]LI X W, CHAO Y H, CHEN L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li+ recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731.

[28]CHUNG W J, TORREJOS R E C, PARK M J, et al. Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves[J]. Chemical Engineering Journal, 2017, 309: 49-62.

[29]LAWAGON C P, NISOLA G M, MUN J, et al. Adsorptive Li+ mining from liquid resources by H2TiO3: equilibrium, kinetics, thermodynamics, and mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 347-356.

[30]LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 267-279.

[31]NISOLA G M, LIMJUCO L A, VIVAS E L, et al. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation[J]. Chemical Engineering Journal, 2015, 280: 536-548.

[32]ZHAO X Y, FENG M H, JIAO Y X, et al. Lithium extraction from brine in an ionic selective desalination battery[J]. Desalination, 2020, 481:114360.

[33]HWANG C W, JEONG M H, KIM Y J, et al. Process design for lithium recovery using bipolar membrane electrodialysis system[J]. Separation and Purification Technology, 2016, 166: 34-40.

[34]SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192.

[35]ZANGLE T A, MANI A, SANTIAGO J G. On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: numerical and experimental study[J]. Langmuir, 2009, 25(6): 3909-3916.

[36]DAVIES C D, CROOKS R M. Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization[J]. Chemical Science, 2020, 11(21): 5547-5558.

[37]BERZINA B, ANAND R K. Tutorial review: enrichment and separation of neutral and charged species by ion concentration polarization focusing[J]. Analtica Chimica Acta, 2020, 1128: 149-173.

[38]LI M, ANAND R K. Recent advancements in ion concentration polarization[J]. Analyst, 2016, 141(12): 3496-3510.

[39]WANG Y C, STEVENS A L, HAN J Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.

[40]GONG L Y, OUYANG W, LI Z R, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41.

[41]GONG L Y, LI Z R, HAN OYO. Numerical simulation of continuous extraction of highly concentrated Li+ from high Mg2+/Li+ ratio brines in an ion concentration polarization-based microfluidic system[J]. Separation and Purification Technology, 2019, 217: 174-182.

[42]TANG J, GONG L Y, JIANG J F, et al. Numerical simulation of electrokinetic desalination using microporous permselective membranes[J]. Desalination, 2020, 477: 114262.

[43]KIM B, KWAK R, KWON H J, et al. Corrigendum: purification of high salinity brine by multi-stage ion concentration polarization desalination[J]. Scientific Reports, 2018, 8: 46918.

[44]PAPADIMITRIOU V A, KRUIT S A, SEGERINK L I, et al. Droplet encapsulation of electrokinetically-focused analytes without loss of resolution[J]. Lab on a Chip, 2020, 20(12): 2209-2217.

[45]KIM S J, KO S H, KANG K H, et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2013, 8(8): 609.

[46]KIM S J, LI L D, HAN J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir, 2009, 25(13): 7759-7765.

[47]MANI A, ZANGLE T A, SANTIAGO J G. On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part I: analytical model and characteristic analysis[J]. Langmuir, 2009, 25(6): 3898-3908.

[48]WONG C L, SORIANO A N, LI M H. Infinite dilution diffusion coefficients of [Bmim]-based ionic liquids in water and its molar conductivities[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 77-83.

[49]DRUZGALSKI C L, ANDERSEN M B, MANI A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface[J]. Physics of Fluids, 2013, 25(11): 110804.

[50]RUBINSTEIN I, ZALTZMAN B. Electro-osmotically induced convection at a permselective membrane[J]. Physical Review E, 2000, 62(2): 2238-2251.